7
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Modelo de aplicación orientada a la web 4.0 en el rendimiento académico del estudiante en educación superior Translated title: Web 4.0-oriented application model for student academic performance in higher education

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Resumen El presente artículo tiene el objetivo de proponer un modelo de Machine Learning (Aprendizaje Automático) con base a la Web 4.0, la cual subyace en una relación intrínseca entre un modelo de Reglas de Asociación y un modelo de árbol de decisión que busca generar un resultado predictivo para la alerta temprana en el rendimiento académico del estudiante en educación superior, siendo reflejado por inercia en las calificaciones que cuantifican al aprendizaje en distintas asignaturas que son objeto de estudio, principalmente desde la potencialidad que trae el algoritmo Apriori, que logra una baja eficiencia de recorrido frecuente de conjuntos y elementos, buscando relaciones causales de elementos frecuentes basadas en reglas de asociación y árboles de decisión. Sin embargo, existen claras dependencias entre asignaturas, niveles, el entorno social y cultural del estudiante. Asimismo, establecer que la principal motivación del proceso de investigación busca generar un modelo que proporcione una orientación académica precisa, que pueda mejorar de manera efectiva la calidad en la gestión del aprendizaje de las personas, siendo esto de gran importancia para el rendimiento académico del estudiante. Además, que pretende coadyuvar en la experiencia educativa a nivel superior, siendo que, en la actualidad, la tecnología proporciona una inmejorable oportunidad de buscar un sistema educativo más efectivo y moderno, incluso en comparación con otros algoritmos de Inteligencia Artificial, que caracteriza a la Web 4.0.

          Translated abstract

          Abstract The objective of this paper is to propose an application model based on Web 4. 0 (Intelligent Web), which underlies an intrinsic relationship between an artificial intelligence model based on association rules and a decision tree algorithm that structures a predictive model for early warning in the pedagogical development of the student, which is reflected in the grades that quantify the degree of learning in different subjects, mainly from the potential of the Apriori algorithm that achieves a low efficiency of frequent paths of sets of elements, this model uses mainly the FP- growth model to search frequent sets of elements by means of association rules and decision trees. However, there are clear dependencies between subjects, levels, social and cultural environment, leading to a rational analysis and early warning of the learning process of each subject, like with the evaluated student. The proposed model provides a precise academic orientation, which can effectively improve the quality in the management of people’s learning, being of great importance for the development and orientation of the students themselves. Besides that, it aims to help understand the situation of students in all aspects and improve the overall level of students, being more effective compared to other machine learning algorithms (Machine Learning), which characterize the Web 4.0

          Related collections

          Most cited references12

          • Record: found
          • Abstract: not found
          • Article: not found

          Quantile Regression

            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Mining association rules between sets of items in large databases

              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              The application research of neural network and BP algorithm in stock price pattern classification and prediction

                Bookmark

                Author and article information

                Journal
                escepies
                Educación Superior
                Edu. Sup. Rev. Cient. Cepies
                Centro Psicopedagógico y de Investigación en Educación Superior CEPIES-UMSA (La Paz, , Bolivia )
                2518-8283
                September 2021
                : 8
                : 2
                : 39-48
                Affiliations
                [01] Tarija orgnameUniversidad Privada Domingo Savio Bolivia tj.helmer.mendoza.j@ 123456upds.net.bo
                Article
                S2518-82832021000200007 S2518-8283(21)00800200007
                2ec920ac-8184-4e1c-b237-319a1b6c52c4

                This work is licensed under a Creative Commons Attribution 4.0 International License.

                History
                : 09 September 2021
                : 12 August 2021
                Page count
                Figures: 0, Tables: 0, Equations: 0, References: 12, Pages: 10
                Product

                SciELO Bolivia

                Categories
                ARTÍCULOS CIENTÍFICOS

                Reglas de Asociación,Arboles de Decisión,Web 4.0,Academic Performance,Association Rules,Decision Trees,Rendimiento Académico

                Comments

                Comment on this article