19
views
0
recommends
+1 Recommend
2 collections
    0
    shares

          The flagship journal of the Society for Endocrinology. Learn more

      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Higher urinary cortisol levels associate with increased cardiovascular risk

      research-article

      Read this article at

      ScienceOpenPublisherPMC
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          There are conflicting data on whether variations of physiologic cortisol levels associated with cardiovascular risk. We hypothesize that prior discordant findings are related to problems associated with varying sample size, techniques for assessing cardiovascular risk and failure to adequately account for environmental factors. To address these issues, we utilized a large sample size, selected the Framingham risk score to compute cardiovascular risk and performed the study in a highly controlled setting. We had two main objectives: determine whether higher, yet physiologic, cortisol levels associated with increased cardiovascular risk and determine whether caveolin-1 (rs926198) risk allele carriers associated with increased cardiovascular risk. This was a cross-sectional study of 574 non-diabetic individuals who completed a common protocol. Data collection included fasting blood samples, blood pressure measurements and a 24-h urine-free cortisol collection. Five hundred seventeen of these participants also completed caveolin-1 genotyping. Subjects were classified as belonging to either the low-mode or high-mode urine-free cortisol groups, based on the bimodal distribution of urine-free cortisol. In multivariate analysis, Framingham risk score was statistically higher in the high-mode cortisol group (10.22 (mean) ± 0.43 ( s.e.m.)) compared to the low-mode cortisol group (7.73 ± 0.34), P < 0.001. Framingham risk score was also statistically higher in the caveolin-1 risk allele carriers (8.91 ± 0.37) compared to caveolin-1 non-risk allele carriers (7.59 ± 0.48), P = 0.034. Overall, the estimated effect on Framingham risk score of carrying the caveolin-1 risk allele was 1.33 ± 0.61, P = 0.029. Both urinary cortisol and caveolin-1 risk allele status are independent predictors of Framingham risk score.

          Related collections

          Most cited references32

          • Record: found
          • Abstract: found
          • Article: not found

          Genetics of human cardiovascular disease.

          Cardiovascular disease encompasses a range of conditions extending from myocardial infarction to congenital heart disease, most of which are heritable. Enormous effort has been invested in understanding the genes and specific DNA sequence variants that are responsible for this heritability. Here, we review the lessons learned for monogenic and common, complex forms of cardiovascular disease. We also discuss key challenges that remain for gene discovery and for moving from genomic localization to mechanistic insights, with an emphasis on the impact of next-generation sequencing and the use of pluripotent human cells to understand the mechanism by which genetic variation contributes to disease. Copyright © 2012 Elsevier Inc. All rights reserved.
            • Record: found
            • Abstract: found
            • Article: not found

            Cardiovascular events and mortality in patients with adrenal incidentalomas that are either non-secreting or associated with intermediate phenotype or subclinical Cushing's syndrome: a 15-year retrospective study.

            Incidental discovery of adrenal masses has increased over the past few years. Mild alterations in cortisol secretion without clinical signs of overt hypercortisolism (subclinical Cushing's syndrome) are a common finding in patients with these tumours. Although metabolic alterations and increased cardiovascular risk have been noted in patients with subclinical Cushing's syndrome, incidence of cardiovascular events and mortality in the long term have not been assessed. We aimed to ascertain the frequency of new cardiovascular events and mortality in patients with non-secreting adrenal incidentalomas, tumours of intermediate phenotype, or those causing subclinical Cushing's syndrome.
              • Record: found
              • Abstract: found
              • Article: not found

              Assessment of claims of improved prediction beyond the Framingham risk score.

              With heightened interest in predictive medicine, many studies try to document information that can improve prediction of major clinical outcomes. To evaluate the reported design and analysis of studies that examined whether additional predictors improve predictive performance when added to the Framingham risk score (FRS), one of the most widely validated and cited clinical prediction scores. Two independent investigators searched 1908 articles citing the article that described the FRS in 1998 until September 2009 through the ISI Web of Knowledge database. Articles were eligible if they included any analyses comparing the predictive performance of the FRS vs the FRS plus some additional predictor for a prospectively assessed outcome. Data Analyses We recorded information on FRS calculation, modeling of additional predictors, outcomes assessed, population evaluated, subgroup analysis documentation, and flaws in the methods that may have affected the reported improvements in predictive ability. We also evaluated the correlation of reported design and analysis features with the predictive model discrimination and improvements with the additional predictors. We evaluated 79 eligible articles. Forty-nine studies (62%) did not calculate the FRS as it has been proposed, 15 (19%) modeled the additional predictor in more than 1 way and presented only the best-fit or area-under-the-curve (AUC) results for only 1 model, 41 (52%) did not examine the original outcome that the FRS was developed for, 33 (42%) studied a population different from what the FRS was intended for, and 25 (32%) claimed improved prediction in 1 subgroup but only 7 (9%) formally tested subgroup differences. Evaluation of independence in multivariable regressions, discrimination in AUC, calibration, and reclassification were reported in 77, 36, 7, and 7 studies, respectively, but these methods were adequately documented in only 60, 13, 4, and 2 studies, respectively. Overall, 63 studies (80%) claimed some improved prediction. Increase in AUC was larger when the predictive performance of the FRS was lower (rho = -0.57, P < .001). Increase in AUC was significantly larger when evaluation of independence in multivariable regression or discrimination in AUC analysis was not adequately documented and when the additional predictor had been modeled in more than 1 way and only 1 model was reported for AUC. The majority of examined studies claimed that they found factors that could offer additional predictive value beyond what the FRS could achieve; however, most had flaws in their design, analyses, and reporting that cast some doubt on the reliability of the claims for improved prediction.

                Author and article information

                Journal
                Endocr Connect
                Endocr Connect
                EC
                Endocrine Connections
                Bioscientifica Ltd (Bristol )
                2049-3614
                June 2019
                23 April 2019
                : 8
                : 6
                : 634-640
                Affiliations
                [1 ]Division of Endocrinology , Diabetes and Hypertension, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
                [2 ]Cardiovascular Genetics , Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, Utah, USA
                [3 ]Vanderbilt University Medical Center , Nashville, Tennessee, USA
                Author notes
                Correspondence should be addressed to A V Haas: ahaas2@ 123456bwh.harvard.edu
                Article
                EC-19-0182
                10.1530/EC-19-0182
                6528405
                31018177
                2eccf35f-4a25-4b1a-9614-9f85ff6f251c
                © 2019 The authors

                This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

                History
                : 10 April 2019
                : 23 April 2019
                Categories
                Research

                cortisol,cardiovascular health,framingham risk score,caveolin-1

                Comments

                Comment on this article

                Related Documents Log