26
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Changes in Susceptibility to Heat During the Summer: A Multicountry Analysis

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Few studies have examined the variation in mortality risk associated with heat during the summer. Here, we apply flexible statistical models to investigate the issue by using a large multicountry data set. We collected daily time-series data of temperature and mortality from 305 locations in 9 countries, in the period 1985–2012. We first estimated the heat-mortality relationship in each location with time-varying distributed lag non-linear models, using a bivariate spline to model the exposure-lag-response over lag 0–10. Estimates were then pooled by country through multivariate meta-analysis. Results provide strong evidence of a reduction in risk over the season. Relative risks for the 99th percentile versus the minimum mortality temperature were in the range of 1.15–2.03 in early summer. In late summer, the excess was substantially reduced or abated, with relative risks in the range of 0.97–1.41 and indications of wider comfort ranges and higher minimum mortality temperatures. The attenuation is mainly due to shorter lag periods in late summer. In conclusion, this multicountry analysis suggests a reduction of heat-related mortality risk over the summer, which can be attributed to several factors, such as true acclimatization, adaptive behaviors, or harvesting effects. These findings may have implications on public health policies and climate change health impact projections.

          Related collections

          Most cited references23

          • Record: found
          • Abstract: found
          • Article: found

          Heat stress and public health: a critical review.

          Heat is an environmental and occupational hazard. The prevention of deaths in the community caused by extreme high temperatures (heat waves) is now an issue of public health concern. The risk of heat-related mortality increases with natural aging, but persons with particular social and/or physical vulnerability are also at risk. Important differences in vulnerability exist between populations, depending on climate, culture, infrastructure (housing), and other factors. Public health measures include health promotion and heat wave warning systems, but the effectiveness of acute measures in response to heat waves has not yet been formally evaluated. Climate change will increase the frequency and the intensity of heat waves, and a range of measures, including improvements to housing, management of chronic diseases, and institutional care of the elderly and the vulnerable, will need to be developed to reduce health impacts.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Heat Waves in the United States: Mortality Risk during Heat Waves and Effect Modification by Heat Wave Characteristics in 43 U.S. Communities

            Background Devastating health effects from recent heat waves, and projected increases in frequency, duration, and severity of heat waves from climate change, highlight the importance of understanding health consequences of heat waves. Objectives We analyzed mortality risk for heat waves in 43 U.S. cities (1987–2005) and investigated how effects relate to heat waves’ intensity, duration, or timing in season. Methods Heat waves were defined as ≥ 2 days with temperature ≥ 95th percentile for the community for 1 May through 30 September. Heat waves were characterized by their intensity, duration, and timing in season. Within each community, we estimated mortality risk during each heat wave compared with non-heat wave days, controlling for potential confounders. We combined individual heat wave effect estimates using Bayesian hierarchical modeling to generate overall effects at the community, regional, and national levels. We estimated how heat wave mortality effects were modified by heat wave characteristics (intensity, duration, timing in season). Results Nationally, mortality increased 3.74% [95% posterior interval (PI), 2.29–5.22%] during heat waves compared with non-heat wave days. Heat wave mortality risk increased 2.49% for every 1°F increase in heat wave intensity and 0.38% for every 1-day increase in heat wave duration. Mortality increased 5.04% (95% PI, 3.06–7.06%) during the first heat wave of the summer versus 2.65% (95% PI, 1.14–4.18%) during later heat waves, compared with non-heat wave days. Heat wave mortality impacts and effect modification by heat wave characteristics were more pronounced in the Northeast and Midwest compared with the South. Conclusions We found higher mortality risk from heat waves that were more intense or longer, or those occurring earlier in summer. These findings have implications for decision makers and researchers estimating health effects from climate change.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              International study of temperature, heat and urban mortality: the 'ISOTHURM' project.

              This study describes heat- and cold-related mortality in 12 urban populations in low- and middle-income countries, thereby extending knowledge of how diverse populations, in non-OECD countries, respond to temperature extremes. The cities were: Delhi, Monterrey, Mexico City, Chiang Mai, Bangkok, Salvador, São Paulo, Santiago, Cape Town, Ljubljana, Bucharest and Sofia. For each city, daily mortality was examined in relation to ambient temperature using autoregressive Poisson models (2- to 5-year series) adjusted for season, relative humidity, air pollution, day of week and public holidays. Most cities showed a U-shaped temperature-mortality relationship, with clear evidence of increasing death rates at colder temperatures in all cities except Ljubljana, Salvador and Delhi and with increasing heat in all cities except Chiang Mai and Cape Town. Estimates of the temperature threshold below which cold-related mortality began to increase ranged from 15 degrees C to 29 degrees C; the threshold for heat-related deaths ranged from 16 degrees C to 31 degrees C. Heat thresholds were generally higher in cities with warmer climates, while cold thresholds were unrelated to climate. Urban populations, in diverse geographic settings, experience increases in mortality due to both high and low temperatures. The effects of heat and cold vary depending on climate and non-climate factors such as the population disease profile and age structure. Although such populations will undergo some adaptation to increasing temperatures, many are likely to have substantial vulnerability to climate change. Additional research is needed to elucidate vulnerability within populations.
                Bookmark

                Author and article information

                Journal
                Am J Epidemiol
                Am. J. Epidemiol
                aje
                amjepid
                American Journal of Epidemiology
                Oxford University Press
                0002-9262
                1476-6256
                01 June 2016
                02 May 2016
                02 May 2016
                : 183
                : 11
                : 1027-1036
                Author notes
                [* ]Correspondence to Dr. Antonio Gasparrini, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, United Kigdom (e-mail: antonio.gasparrini@ 123456lshtm.ac.uk ).

                Abbreviation: DLNM, distributed lag non-linear model.

                Article
                kwv260
                10.1093/aje/kwv260
                4887574
                27188948
                2ed09663-2fac-4482-8911-5a95814b27ab
                © The Author 2016. Published by Oxford University Press on behalf of the Johns Hopkins Bloomberg School of Public Health.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 12 June 2015
                : 17 September 2015
                Funding
                Funded by: Medical Research Council-
                Award ID: MR/M022625/1
                Award ID: G1002296
                Funded by: National Institute for Health Research-United Kingdom
                Funded by: NIHR
                Funded by: University of Queensland http://dx.doi.org/10.13039/501100001794
                Funded by: Ministry of Education http://dx.doi.org/10.13039/501100002701
                Award ID: PRX12/00515
                Funded by: National Health and Medical Research Council http://dx.doi.org/10.13039/501100000925
                Award ID: 553043
                Funded by: Australian Research Council http://dx.doi.org/10.13039/501100000923
                Award ID: DP110100651
                Funded by: Environment Research and Technology Development Fund
                Award ID: S-8 & S10
                Funded by: National Research Foundation of Korea http://dx.doi.org/10.13039/501100003725
                Award ID: K21004000001-10A0500-00710
                Categories
                Original Contributions
                Susceptibility to Heat

                Public health
                adaptation,climate change,distributed lag models,heat,mortality,temperature
                Public health
                adaptation, climate change, distributed lag models, heat, mortality, temperature

                Comments

                Comment on this article