4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      A Cumulative Risk Perspective for Occupational Health and Safety (OHS) Professionals

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Cumulative risk assessment (CRA) addresses the combined risk associated with chemical and non-chemical exposures. Although CRA approaches are utilized in environmental and ecological contexts, they are rarely applied in workplaces. In this perspectives article, we strive to raise awareness among occupational health and safety (OHS) professionals and foster the greater adoption of a CRA perspective in practice. Specifically, we provide an overview of CRA literature as well as preliminary guidance on when to consider a CRA approach in occupational settings and how to establish reasonable boundaries. Examples of possible workplace co-exposures and voluntary risk management actions are discussed. We also highlight important implications for workplace CRA research and practice. In particular, future needs include simple tools for identifying combinations of chemical and non-chemical exposures, uniform risk management guidelines, and risk communication materials. Further development of practical CRA methods and tools are essential to meet the needs of complex and changing work environments.

          Related collections

          Most cited references88

          • Record: found
          • Abstract: found
          • Article: not found

          Lead Exposure and Cardiovascular Disease—A Systematic Review

          Objective This systematic review evaluates the evidence on the association between lead exposure and cardiovascular end points in human populations. Methods We reviewed all observational studies from database searches and citations regarding lead and cardiovascular end points. Results A positive association of lead exposure with blood pressure has been identified in numerous studies in different settings, including prospective studies and in relatively homogeneous socioeconomic status groups. Several studies have identified a dose–response relationship. Although the magnitude of this association is modest, it may be underestimated by measurement error. The hypertensive effects of lead have been confirmed in experimental models. Beyond hypertension, studies in general populations have identified a positive association of lead exposure with clinical cardiovascular outcomes (cardiovascular, coronary heart disease, and stroke mortality; and peripheral arterial disease), but the number of studies is small. In some studies these associations were observed at blood lead levels < 5 μg/dL. Conclusions We conclude that the evidence is sufficient to infer a causal relationship of lead exposure with hypertension. We conclude that the evidence is suggestive but not sufficient to infer a causal relationship of lead exposure with clinical cardiovascular outcomes. There is also suggestive but insufficient evidence to infer a causal relationship of lead exposure with heart rate variability. Public Health Implications These findings have immediate public health implications. Current occupational safety standards for blood lead must be lowered and a criterion for screening elevated lead exposure needs to be established in adults. Risk assessment and economic analyses of lead exposure impact must include the cardiovascular effects of lead. Finally, regulatory and public health interventions must be developed and implemented to further prevent and reduce lead exposure.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Global Estimates of the Burden of Injury and Illness at Work in 2012

            This article reviews the present indicators, trends, and recent solutions and strategies to tackle major global and country problems in safety and health at work. The article is based on the Yant Award Lecture of the American Industrial Hygiene Association (AIHA) at its 2013 Congress. We reviewed employment figures, mortality rates, occupational burden of disease and injuries, reported accidents, surveys on self-reported occupational illnesses and injuries, attributable fractions, national economic cost estimates of work-related injuries and ill health, and the most recent information on the problems from published papers, documents, and electronic data sources of international and regional organizations, in particular the International Labor Organization (ILO), World Health Organization (WHO), and European Union (EU), institutions, agencies, and public websites. We identified and analyzed successful solutions, programs, and strategies to reduce the work-related negative outcomes at various levels. Work-related illnesses that have a long latency period and are linked to ageing are clearly on the increase, while the number of occupational injuries has gone down in industrialized countries thanks to both better prevention and structural changes. We have estimated that globally there are 2.3 million deaths annually for reasons attributed to work. The biggest component is linked to work-related diseases, 2.0 million, and 0.3 million linked to occupational injuries. However, the division of these two factors varies depending on the level of development. In industrialized countries the share of deaths caused by occupational injuries and work-related communicable diseases is very low while non-communicable diseases are the overwhelming causes in those countries. Economic costs of work-related injury and illness vary between 1.8 and 6.0% of GDP in country estimates, the average being 4% according to the ILO. Singapore's economic costs were estimated to be equivalent to 3.2% of GDP based on a preliminary study. If economic losses would take into account involuntary early retirement then costs may be considerably higher, for example, in Finland up to 15% of GDP, while this estimate covers various disorders where work and working conditions may be just one factor of many or where work may aggravate the disease, injury, or disorders, such as traffic injuries, mental disorders, alcoholism, and genetically induced problems. Workplace health promotion, services, and safety and health management, however, may have a major preventive impact on those as well. Leadership and management at all levels, and engagement of workers are key issues in changing the workplace culture. Vision Zero is a useful concept and philosophy in gradually eliminating any harm at work. Legal and enforcement measures that themselves support companies and organizations need to be supplemented with economic justification and convincing arguments to reduce corner-cutting in risk management, and to avoid short- and long-term disabilities, premature retirement, and corporate closures due to mismanagement and poor and unsustainable work life. We consider that a new paradigm is needed where good work is not just considered a daily activity. We need to foster stable conditions and circumstances and sustainable work life where the objective is to maintain your health and work ability beyond the legal retirement age. We need safe and healthy work, for life.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Synergistic Effects of Traffic-Related Air Pollution and Exposure to Violence on Urban Asthma Etiology

              Background Disproportionate life stress and consequent physiologic alteration (i.e., immune dysregulation) has been proposed as a major pathway linking socioeconomic position, environmental exposures, and health disparities. Asthma, for example, disproportionately affects lower-income urban communities, where air pollution and social stressors may be elevated. Objectives We aimed to examine the role of exposure to violence (ETV), as a chronic stressor, in altering susceptibility to traffic-related air pollution in asthma etiology. Methods We developed geographic information systems (GIS)–based models to retrospectively estimate residential exposures to traffic-related pollution for 413 children in a community-based pregnancy cohort, recruited in East Boston, Massachusetts, between 1987 and 1993, using monthly nitrogen dioxide measurements for 13 sites over 18 years. We merged pollution estimates with questionnaire data on lifetime ETV and examined the effects of both on childhood asthma etiology. Results Correcting for potential confounders, we found an elevated risk of asthma with a 1-SD (4.3 ppb) increase in NO2 exposure solely among children with above-median ETV [odds ratio (OR) = 1.63; 95% confidence interval (CI), 1.14–2.33)]. Among children always living in the same community, with lesser exposure measurement error, this association was magnified (OR = 2.40; 95% CI, 1.48–3.88). Of multiple exposure periods, year-of-diagnosis NO2 was most predictive of asthma outcomes. Conclusions We found an association between traffic-related air pollution and asthma solely among urban children exposed to violence. Future studies should consider socially patterned susceptibility, common spatial distributions of social and physical environmental factors, and potential synergies among these. Prospective assessment of physical and social exposures may help determine causal pathways and critical exposure periods.
                Bookmark

                Author and article information

                Journal
                Int J Environ Res Public Health
                Int J Environ Res Public Health
                ijerph
                International Journal of Environmental Research and Public Health
                MDPI
                1661-7827
                1660-4601
                31 August 2020
                September 2020
                : 17
                : 17
                : 6342
                Affiliations
                [1 ]Division of Science Integration, National Institute for Occupational Safety and Health, Cincinnati, OH 45226, USA
                [2 ]E Risk Sciences, LLP, Lafayette, CO 80026, USA; pwilliams@ 123456erisksciences.com
                [3 ]Institute for a Sustainable Environment, Clarkson University, Potsdam, NY 13699, USA; arossner@ 123456clarkson.edu
                [4 ]Department of Environmental and Occupational Health, Dornsife School of Public Health, Drexel University, Philadelphia, PA 19104, USA; jec373@ 123456drexel.edu
                [5 ]Center for Public Health and Environmental Assessment, Office of Research and Development, USA EPA, Cincinnati, OH 45268, USA; rice.glenn@ 123456epa.gov
                Author notes
                [* ]Correspondence: RNiemeier1@ 123456cdc.gov
                Article
                ijerph-17-06342
                10.3390/ijerph17176342
                7503320
                32878292
                2ed7d841-a140-443f-8d68-e279795543fd
                © 2020 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 11 June 2020
                : 19 August 2020
                Categories
                Article

                Public health
                cra,cumulative risk,exposure assessment,industrial hygiene,workplace,ohs professionals
                Public health
                cra, cumulative risk, exposure assessment, industrial hygiene, workplace, ohs professionals

                Comments

                Comment on this article