42
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      The Effectiveness of Liraglutide in Nonalcoholic Fatty Liver Disease Patients with Type 2 Diabetes Mellitus Compared to Sitagliptin and Pioglitazone

      other

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background. Liraglutide leading to improve not only glycaemic control but also liver inflammation in non-alcoholic fatty liver disease (NAFLD) patients. Aims. The aim of this study is to elucidate the effectiveness of liraglutide in NAFLD patients with type 2 diabetes mellitus (T2DM) compared to sitagliptin and pioglitazone. Methods. We retrospectively enrolled 82 Japanese NAFLD patients with T2DM and divided into three groups (liraglutide: N = 26, sitagliptin; N = 36, pioglitazone; N = 20). We compared the baseline characteristics, changes of laboratory data and body weight. Results. At the end of follow-up, ALT, fast blood glucose, and HbA1c level significantly improved among the three groups. AST to platelet ratio significantly decreased in liraglutide group and pioglitazone group. The body weight significantly decreased in liraglutide group (81.8 kg to 78.0 kg, P < 0.01). On the other hands, the body weight significantly increased in pioglitazone group and did not change in sitagliptin group. Multivariate regression analysis indicated that administration of liraglutide as an independent factor of body weight reduction for more than 5% (OR 9.04; 95% CI 1.12–73.1, P = 0.04). Conclusions. Administration of liraglutide improved T2DM but also improvement of liver inflammation, alteration of liver fibrosis, and reduction of body weight.

          Related collections

          Most cited references13

          • Record: found
          • Abstract: found
          • Article: not found

          Nonalcoholic steatohepatitis: Mayo Clinic experiences with a hitherto unnamed disease.

          Nonalcoholic steatohepatitis is a poorly understood and hitherto unnamed liver disease that histologically mimics alcoholic hepatitis and that also may progress to cirrhosis. Described here are findings in 20 patients with nonalcoholic steatohepatitis of unknown cause. The biopsy specimens were characterized by the presence of striking fatty changes with evidence of lobular hepatitis, focal necroses with mixed inflammatory infiltrates, and, in most instances, Mallory bodies; Evidence of fibrosis was found in most specimens, and cirrhosis was diagnosed in biopsy tissue from three patients. The disease was more common in women. Most patients were moderately obese, and many had obesity-associated diseases, such as diabetes mellitus and cholelithiasis. Presence of hepatomegaly and mild abnormalities of liver function were common clinical findings. Currently, we know of no effective therapy.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Effect of 6-week course of glucagon-like peptide 1 on glycaemic control, insulin sensitivity, and beta-cell function in type 2 diabetes: a parallel-group study.

            Glucagon-like peptide 1 (GLP-1) has been proposed as a treatment for type 2 diabetes. We have investigated the long-term effects of continuous administration of this peptide hormone in a 6-week pilot study. 20 patients with type 2 diabetes were alternately assigned continuous subcutaneous infusion of GLP-1 (n=10) or saline (n=10) for 6 weeks. Before (week 0) and at weeks 1 and 6, they underwent beta-cell function tests (hyperglycaemic clamps), 8 h profiles of plasma glucose, insulin, C-peptide, glucagon, and free fatty acids, and appetite and side-effect ratings on 100 mm visual analogue scales; at weeks 0 and 6 they also underwent dexascanning, measurement of insulin sensitivity (hyperinsulinaemic euglycaemic clamps), haemoglobin A(1c), and fructosamine. The primary endpoints were haemoglobin A(1c) concentration, 8-h profile of glucose concentration in plasma, and beta-cell function (defined as the first-phase response to glucose and the maximum insulin secretory capacity of the cell). Analyses were per protocol. One patient assigned saline was excluded because no veins were accessible. In the remaining nine patients in that group, no significant changes were observed except an increase in fructosamine concentration (p=0.0004). In the GLP-1 group, fasting and 8 h mean plasma glucose decreased by 4.3 mmol/L and 5.5 mmol/L (p<0.0001). Haemoglobin A(1c) decreased by 1.3% (p=0.003) and fructosamine fell to normal values (p=0.0002). Fasting and 8 h mean concentrations of free fatty acids decreased by 30% and 23% (p=0.0005 and 0.01, respectively). Gastric emptying was inhibited, bodyweight decreased by 1.9 kg, and appetite was reduced. Both insulin sensitivity and beta-cell function improved (p=0.003 and p=0.003, respectively). No important side-effects were seen. GLP-1 could be a new treatment for type 2 diabetes, though further investigation of the long-term effects of GLP-1 is needed.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Effect of pioglitazone on abdominal fat distribution and insulin sensitivity in type 2 diabetic patients.

              We examined the effect of pioglitazone on abdominal fat distribution to elucidate the mechanisms via which pioglitazone improves insulin resistance in patients with type 2 diabetes mellitus. Thirteen type 2 diabetic patients (nine men and four women; age, 52 +/- 3 yr; body mass index, 29.0 +/- 1.1 kg/m(2)), who were being treated with a stable dose of sulfonylurea (n = 7) or with diet alone (n = 6), received pioglitazone (45 mg/d) for 16 wk. Before and after pioglitazone treatment, subjects underwent a 75-g oral glucose tolerance test (OGTT) and two-step euglycemic insulin clamp (insulin infusion rates, 40 and 160 mU/m(2).min) with [(3)H]glucose. Abdominal fat distribution was evaluated using magnetic resonance imaging at L4-5. After 16 wk of pioglitazone treatment, fasting plasma glucose (179 +/- 10 to 140 +/- 10 mg/dl; P < 0.01), mean plasma glucose during OGTT (295 +/- 13 to 233 +/- 14 mg/dl; P < 0.01), and hemoglobin A(1c) (8.6 +/- 0.4% to 7.2 +/- 0.5%; P < 0.01) decreased without a change in fasting or post-OGTT insulin levels. Fasting plasma FFA (674 +/- 38 to 569 +/- 31 microEq/liter; P < 0.05) and mean plasma FFA (539 +/- 20 to 396 +/- 29 microEq/liter; P < 0.01) during OGTT decreased after pioglitazone. In the postabsorptive state, hepatic insulin resistance [basal endogenous glucose production (EGP) x basal plasma insulin concentration] decreased from 41 +/- 7 to 25 +/- 3 mg/kg fat-free mass (FFM).min x microU/ml; P < 0.05) and suppression of EGP during the first insulin clamp step (1.1 +/- 0.1 to 0.6 +/- 0.2 mg/kg FFM.min; P < 0.05) improved after pioglitazone treatment. The total body glucose MCR during the first and second insulin clamp steps increased after pioglitazone treatment [first MCR, 3.5 +/- 0.5 to 4.4 +/- 0.4 ml/kg FFM.min (P < 0.05); second MCR, 8.7 +/- 1.0 to 11.3 +/- 1.1 ml/kg FFM(.)min (P < 0.01)]. The improvement in hepatic and peripheral tissue insulin sensitivity occurred despite increases in body weight (82 +/- 4 to 85 +/- 4 kg; P < 0.05) and fat mass (27 +/- 2 to 30 +/- 3 kg; P < 0.05). After pioglitazone treatment, sc fat area at L4-5 (301 +/- 44 to 342 +/- 44 cm(2); P < 0.01) increased, whereas visceral fat area at L4-5 (144 +/- 13 to 131 +/- 16 cm(2); P < 0.05) and the ratio of visceral to sc fat (0.59 +/- 0.08 to 0.44 +/- 0.06; P < 0.01) decreased. In the postabsorptive state hepatic insulin resistance (basal EGP x basal immunoreactive insulin) correlated positively with visceral fat area (r = 0.55; P < 0.01). The glucose MCRs during the first (r = -0.45; P < 0.05) and second (r = -0.44; P < 0.05) insulin clamp steps were negatively correlated with the visceral fat area. These results demonstrate that a shift of fat distribution from visceral to sc adipose depots after pioglitazone treatment is associated with improvements in hepatic and peripheral tissue sensitivity to insulin.
                Bookmark

                Author and article information

                Journal
                ScientificWorldJournal
                ScientificWorldJournal
                TSWJ
                The Scientific World Journal
                The Scientific World Journal
                1537-744X
                2012
                13 August 2012
                : 2012
                : 496453
                Affiliations
                1Department of Gastroenterology, Mitsui Memorial Hospital, Kanda-izumicho 1, Chiyoda-ku, Tokyo 101-8643, Japan
                2Department of Diabetes and Metabolism, Mitsui Memorial Hospital, Kanda-izumicho 1, Chiyoda-ku, Tokyo 101-8643, Japan
                3Department of Gastroenterology, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
                4Yamanashi Prefectural Hospital Organization, 1-1-1 Fujimi, Kofu City 400-8506, Japan
                Author notes

                Academic Editors: H. L. Y. Chan, C. Trepo, and L. A. Videla

                Article
                10.1100/2012/496453
                3425807
                22927782
                2eeda0b4-b078-4d53-95a2-bf3bd1f06c8c
                Copyright © 2012 Takamasa Ohki et al.

                This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 29 May 2012
                : 12 July 2012
                Categories
                Clinical Study

                Uncategorized
                Uncategorized

                Comments

                Comment on this article