22
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Circadian Integration of Glutamatergic Signals by Little SAAS in Novel Suprachiasmatic Circuits

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Neuropeptides are critical integrative elements within the central circadian clock in the suprachiasmatic nucleus (SCN), where they mediate both cell-to-cell synchronization and phase adjustments that cause light entrainment. Forward peptidomics identified little SAAS, derived from the proSAAS prohormone, among novel SCN peptides, but its role in the SCN is poorly understood.

          Methodology/Principal Findings

          Little SAAS localization and co-expression with established SCN neuropeptides were evaluated by immunohistochemistry using highly specific antisera and stereological analysis. Functional context was assessed relative to c-FOS induction in light-stimulated animals and on neuronal circadian rhythms in glutamate-stimulated brain slices. We found that little SAAS-expressing neurons comprise the third most abundant neuropeptidergic class (16.4%) with unusual functional circuit contexts. Little SAAS is localized within the densely retinorecipient central SCN of both rat and mouse, but not the retinohypothalamic tract (RHT). Some little SAAS colocalizes with vasoactive intestinal polypeptide (VIP) or gastrin-releasing peptide (GRP), known mediators of light signals, but not arginine vasopressin (AVP). Nearly 50% of little SAAS neurons express c-FOS in response to light exposure in early night. Blockade of signals that relay light information, via NMDA receptors or VIP- and GRP-cognate receptors, has no effect on phase delays of circadian rhythms induced by little SAAS.

          Conclusions/Significance

          Little SAAS relays signals downstream of light/glutamatergic signaling from eye to SCN, and independent of VIP and GRP action. These findings suggest that little SAAS forms a third SCN neuropeptidergic system, processing light information and activating phase-shifts within novel circuits of the central circadian clock.

          Related collections

          Most cited references60

          • Record: found
          • Abstract: found
          • Article: not found

          Vasoactive intestinal polypeptide mediates circadian rhythmicity and synchrony in mammalian clock neurons.

          The mammalian suprachiasmatic nucleus (SCN) is a master circadian pacemaker. It is not known which SCN neurons are autonomous pacemakers or how they synchronize their daily firing rhythms to coordinate circadian behavior. Vasoactive intestinal polypeptide (VIP) and the VIP receptor VPAC(2) (encoded by the gene Vipr2) may mediate rhythms in individual SCN neurons, synchrony between neurons, or both. We found that Vip(-/-) and Vipr2(-/-) mice showed two daily bouts of activity in a skeleton photoperiod and multiple circadian periods in constant darkness. Loss of VIP or VPAC(2) also abolished circadian firing rhythms in approximately half of all SCN neurons and disrupted synchrony between rhythmic neurons. Critically, daily application of a VPAC(2) agonist restored rhythmicity and synchrony to VIP(-/-) SCN neurons, but not to Vipr2(-/-) neurons. We conclude that VIP coordinates daily rhythms in the SCN and behavior by synchronizing a small population of pacemaking neurons and maintaining rhythmicity in a larger subset of neurons.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Suprachiasmatic nucleus in the mouse: retinal innervation, intrinsic organization and efferent projections.

            The suprachiasmatic nucleus (SCN) is the principal circadian pacemaker of the mammalian circadian timing system. The SCN is composed of two anatomically and functionally distinct subdivisions, designated core and shell, which can be distinguished on the basis of their chemoarchitecture and connections in the rat. In the present study, we examine the intrinsic organization and the afferent and efferent connections of the mouse SCN using immunocytochemistry and ocular injections of cholera toxin. Neurons of the SCN shell contain GABA, calbindin (CALB), arginine vasopressin (AVP), angiotensin II (AII) and met-enkephalin (mENK), and receive input from galanin (GAL) and vasoactive intestinal polypeptide (VIP) immunoreactive fibers. Neurons of the SCN core synthesize GABA, CALB, VIP, calretinin (CALR), gastrin releasing peptide (GRP), and neurotensin (NT), and receive input from the retina and from fibers that contain neuropeptide Y (NPY) and 5-hydroxytryptamine (5HT). Fibers projecting from SCN neurons that are immunoreactive for AVP and VIP exhibit a characteristic morphology, and project to the lateral septum, a series of medial hypothalamic areas extending from the preoptic to the posterior hypothalamic area and to the paraventricular thalamic nucleus. The organization of the mouse SCN, and its connections, are similar to that in other mammalian species.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Z/EG, a double reporter mouse line that expresses enhanced green fluorescent protein upon Cre-mediated excision.

              The Cre/loxP system has become an important tool in designing postintegrational switch mechanisms for transgenes in mice. The power and spectrum of application of this system depends on transgenic mouse lines that provide Cre recombinase activity with a defined cell type-, tissue-, or developmental stage-specificity. We have developed a novel mouse line that acts as a Cre reporter. The mice, designated Z/EG (lacZ/EGFP), express lacZ throughout embryonic development and adult stages. Cre excision, however, removes the lacZ gene, which activates expression of the second reporter, enhanced green fluorescent protein. We have found that the double-reporter Z/EG line is able to indicate the occurrence of Cre excision from early embryonic to adult lineages. The advantage of the Z/EG line is that Cre-mediated excision can be monitored in live samples and that live cells with Cre-mediated excision can be isolated using a single-step FACS. It will be a valuable reagent for the increasing number of investigators taking advantage of the powerful tools provided by the Cre/loxP site-specific recombinase system.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2010
                7 September 2010
                : 5
                : 9
                : e12612
                Affiliations
                [1 ]Neuroscience Program, University of Illinois, Urbana, Illinois, United States of America
                [2 ]Department of Cell and Developmental Biology, University of Illinois, Urbana, Illinois, United States of America
                [3 ]Beckman Institute for Advanced Science and Technology, University of Illinois, Urbana, Illinois, United States of America
                [4 ]Department of Cell Biology and Neuroscience, University of Medicine and Dentistry of New Jersey, Newark, New Jersey, United States of America
                [5 ]Department of Biology, The Johns Hopkins University, Baltimore, Maryland, United States of America
                [6 ]Department of Chemistry, University of Illinois, Urbana, Illinois, United States of America
                Vanderbilt University, United States of America
                Author notes

                Conceived and designed the experiments: NAJ JWM JVS MUG. Performed the experiments: NAJ EVR JLE. Analyzed the data: NAJ JWM EVR. Contributed reagents/materials/analysis tools: DJM TPC JLE JEP JVS. Wrote the paper: NAJ JWM MUG.

                Article
                10-PONE-RA-18263R2
                10.1371/journal.pone.0012612
                2935382
                20830308
                2ef002dc-d724-4cbf-b697-53b2f061379f
                Atkins Jr. et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 23 April 2010
                : 3 August 2010
                Page count
                Pages: 13
                Categories
                Research Article
                Chemical Biology/Protein Chemistry and Proteomics
                Neuroscience/Neural Homeostasis
                Neuroscience/Neuronal Signaling Mechanisms
                Neuroscience/Sensory Systems
                Physiology/Neural Homeostasis
                Physiology/Neuronal Signaling Mechanisms

                Uncategorized
                Uncategorized

                Comments

                Comment on this article