20
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Fundc1-dependent mitophagy is obligatory to ischemic preconditioning-conferred renoprotection in ischemic AKI via suppression of Drp1-mediated mitochondrial fission

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          FUN14 domain-containing protein 1 (Fundc1)-dependent mitophagy, mainly activated by ischemic/hypoxic preconditioning, benefits acute myocardial reperfusion injury and chronic metabolic syndrome via sustaining mitochondrial homeostasis. Mitochondrial fission plays a pathogenic role in ischemic acute kidney injury (AKI) through perturbation of mitochondrial quality and activation of mitochondrial apoptosis. The aim of our study was to explore the role of Fundc1 mitophagy in ischemia preconditioning (IPC)-mediated renoprotection. Proximal tubule-specific Fundc1 knockout ( Fundc1 PTKO ) mice were subjected to ischemia reperfusion injury (IRI) and IPC prior to assessment of renal function, mitophagy, mitochondrial quality control, and Drp1-related mitochondrial fission. Following exposure to IPC, Fundc1 mitophagy was activated through post-transcriptional phosphorylation at Ser17. Interestingly, IRI-mediated renal injury, inflammation, and tubule cell death were mitigated by IPC whereas proximal tubule-specific Fundc1 knockout ( Fundc1PTKO) mice abolished IPC-offered renoprotection. Mechanistically, IRI-evoked mitochondrial damage was improved by IPC whereas Fundc1 deficiency provoked mitochondrial abnormality, manifested by impaired mitochondrial quality and hyperactivated Drp1-dependent mitochondrial fission. Interestingly, Fundc1 deficiency-associated mitochondrial dysfunction was reversed by pharmacological inhibition of mitochondrial fission. In vivo, Fundc1 deletion-caused renal injury, severe pro-inflammatory response, and tubule cell death could be nullified by way of knockout Drp1 on Fundc1PTKO background. Finally, we also revealed that IPC triggered Fundc1 mitophagy activation through UNC-51-like kinase 1 (Ulk1) and Ulk1 ablation interrupted IPC-mediated Fundc1 activation and thus attenuated IPC-induced renoprotection. Fundc1 mitophagy, primarily driven by IPC, confers resistance to AKI through reconciliation of mitochondrial fission, implicating the therapeutic potential of targeting mitochondrial homeostasis for AKI.

          Graphical abstract

          Related collections

          Most cited references54

          • Record: found
          • Abstract: found
          • Article: not found

          Pyroptosis versus necroptosis: similarities, differences, and crosstalk

          Pyroptosis and necroptosis represent two pathways of genetically encoded necrotic cell death. Although these cell death programmes can protect the host against microbial pathogens, their dysregulation has been implicated in a variety of autoimmune and auto-inflammatory conditions. The disease-promoting potential of necroptosis and pyroptosis is likely a consequence of their ability to induce a lytic cell death. This cell suicide mechanism, distinct from apoptosis, allows the release of immunogenic cellular content, including damage-associated molecular patterns (DAMPs), and inflammatory cytokines such as interleukin-1β (IL-1β), to trigger inflammation. In this Review, we discuss recent discoveries that have advanced our understanding on the primary functions of pyroptosis and necroptosis, including evidence for the specific cytokines and DAMPs responsible for driving inflammation. We compare the similar and unique aspects of pyroptotic- and necroptotic-induced membrane damage, and explore how these may functionally impact distinct intracellular organelles and signalling pathways. We also examine studies highlighting the crosstalk that can occur between necroptosis and pyroptosis signalling, and evidence supporting the physiological significance of this convergence. Ultimately, a better understanding of the similarities, unique aspects and crosstalk of pyroptosis and necroptosis will inform as to how these cell death pathways might be manipulated for therapeutic benefit.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A regulatory signaling loop comprising the PGAM5 phosphatase and CK2 controls receptor-mediated mitophagy.

            Mitochondrial autophagy, or mitophagy, is a major mechanism involved in mitochondrial quality control via selectively removing damaged or unwanted mitochondria. Interactions between LC3 and mitophagy receptors such as FUNDC1, which harbors an LC3-interacting region (LIR), are essential for this selective process. However, how mitochondrial stresses are sensed to activate receptor-mediated mitophagy remains poorly defined. Here, we identify that the mitochondrially localized PGAM5 phosphatase interacts with and dephosphorylates FUNDC1 at serine 13 (Ser-13) upon hypoxia or carbonylcyanide p-trifluoromethoxyphenylhydrazone (FCCP) treatment. Dephosphorylation of FUNDC1 catalyzed by PGAM5 enhances its interaction with LC3, which is abrogated following knockdown of PGAM5 or the introduction of a cell-permeable unphosphorylated peptide encompassing the Ser-13 and LIR of FUNDC1. We further observed that CK2 phosphorylates FUNDC1 to reverse the effect of PGAM5 in mitophagy activation. Our results reveal a mechanistic signaling pathway linking mitochondria-damaging signals to the dephosphorylation of FUNDC1 by PGAM5, which ultimately induces mitophagy. Copyright © 2014 Elsevier Inc. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              ULK1 translocates to mitochondria and phosphorylates FUNDC1 to regulate mitophagy.

              Autophagy eliminates dysfunctional mitochondria in an intricate process known as mitophagy. ULK1 is critical for the induction of autophagy, but its substrate(s) and mechanism of action in mitophagy remain unclear. Here, we show that ULK1 is upregulated and translocates to fragmented mitochondria upon mitophagy induction by either hypoxia or mitochondrial uncouplers. At mitochondria, ULK1 interacts with FUNDC1, phosphorylating it at serine 17, which enhances FUNDC1 binding to LC3. A ULK1-binding-deficient mutant of FUNDC1 prevents ULK1 translocation to mitochondria and inhibits mitophagy. Finally, kinase-active ULK1 and a phospho-mimicking mutant of FUNDC1 rescue mitophagy in ULK1-null cells. Thus, we conclude that FUNDC1 regulates ULK1 recruitment to damaged mitochondria, where FUNDC1 phosphorylation by ULK1 is crucial for mitophagy.
                Bookmark

                Author and article information

                Contributors
                Journal
                Redox Biol
                Redox Biol
                Redox Biology
                Elsevier
                2213-2317
                28 December 2019
                February 2020
                28 December 2019
                : 30
                : 101415
                Affiliations
                [a ]Chinese PLA General Hospital, Medical School of Chinese PLA, Beijing, 100853, China
                [b ]Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
                [c ]Center for Cardiovascular Research and Alternative Medicine, University of Wyoming College of Health Sciences, Laramie, WY, 82071, USA
                Author notes
                []Corresponding author. Chinese PLA General Hospital, Medical School of Chinese PLA, Beijing, 100853, China. zhouhao@ 123456plagh.org
                [∗∗ ]Corresponding author. Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China. jren@ 123456uwyo.edu
                Article
                S2213-2317(19)31510-1 101415
                10.1016/j.redox.2019.101415
                6940662
                31901590
                2ef238ee-4f87-4f3e-8e76-9853ead49511
                © 2019 The Authors

                This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

                History
                : 3 December 2019
                : 18 December 2019
                : 27 December 2019
                Categories
                Research Paper

                fundc1,mitophagy,ulk1,ipc,aki,mitochondrial fission,drp1
                fundc1, mitophagy, ulk1, ipc, aki, mitochondrial fission, drp1

                Comments

                Comment on this article