Blog
About

8
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Compressive Sensing for Radar Target Signal Recovery Based on Block Sparse Bayesian Learning(in English)

      Read this article at

      ScienceOpenPublisherDOAJ
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Nowadays, high-speed sampling and transmission is a foremost challenge of radar system. In order to solve this problem, a compressive sensing approach is proposed for radar target signals in this study. Considering the block sparse structure of signals, the proposed method uses a simple measurement matrix to sample the signals and employ a Block Sparse Bayesian Learning (BSBL) algorithm to recover the signals. The classical BSBL algorithm is applicable to real signal, while radar signals are complex. Therefore, a Complex Block Sparse Bayesian Learning (CBSBL) is extended for the radar target signal reconstruction. Since the existed radar signal compressive sensing models do not take block structures in consideration, the signal reconstruction of proposed approach is more accurate and robust, and the simple measurement matrix leads to an easy implementation of hardware. The effectiveness of the proposed approach is demonstrated by numerical simulations.

          Related collections

          Author and article information

          Journal
          Journal of Radars
          Chinese Academy of Sciences
          01 February 2016
          : 5
          : 1
          : 99-108
          Affiliations
          [1 ] Science and Technology on Automatic Target Recognition Laboratory, National University of Defense Technology
          Article
          779206031fec4bef93567c4fc1305dba
          10.12000/JR15056

          This work is licensed under a Creative Commons Attribution 4.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

          Categories
          Technology (General)
          T1-995

          Comments

          Comment on this article