2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Optimizing repair of tendon ruptures and chronic tendinopathies: Integrating the use of biomarkers with biological interventions to improve patient outcomes and clinical trial design

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Tendons are dense connective tissues of the musculoskeletal system that link bones with muscles to foster mobility. They have complex structures and exist in varying biomechanical, metabolic and biological environments. In addition, tendon composition and mechanical properties can change over the lifespan as an individual ages. Many tendons function in high stress conditions with a low vascular and neuronal supply, conditions often leading to development of chronic tendinopathies, and in some cases, overt rupture of the tissues. Given their essential nature for human mobility and navigation through the environment, the effective repair and regeneration of different tendons after injury or damage is critical for quality of life, and for elite athletes, the return to sport participation at a high level. However, for mainly unknown reasons, the outcomes following injury are not always successful and lead to functional compromise and risk for re-injury. Thus, there is a need to identify those patients who are at risk for developing tendon problems, as well those at risk for poor outcomes after injury and to design interventions to improve outcomes after injury or rupture to specific tendons. This review will discuss recent advances in the identification of biomarkers prognostic for successful and less successful outcomes after tendon injury, and the mechanistic implications of such biomarkers, as well as the potential for specific biologic interventions to enhance outcomes to improve both quality of life and a return to participation in sports. In addition, the implication of these biomarkers for clinical trial design is discussed, as is the issue of whether such biomarkers for successful healing of one tendon can be extended to all tendons or are valid only for tendons in specific biomechanical and biological environments. As maintaining an active lifestyle is critical for health, the successful implementation of these advances will benefit the large number of individuals at risk.

          Related collections

          Most cited references157

          • Record: found
          • Abstract: found
          • Article: not found

          Tendon and ligament regeneration and repair: clinical relevance and developmental paradigm.

          As dense connective tissues connecting bone to muscle and bone to bone, respectively, tendon and ligament (T/L) arise from the somitic mesoderm, originating in a recently discovered somitic compartment, the syndetome. Inductive signals from the adjacent sclerotome and myotome upregulate expression of Scleraxis, a key transcription factor for tenogenic and ligamentogenic differentiation. Understanding T/L development is critical to establishing a knowledge base for improving the healing and repair of T/L injuries, a high-burden disease due to the intrinsically poor natural healing response. Current treatment of the three most common tendon injuries-tearing of the rotator cuff of the shoulder, flexor tendon of the hand, and Achilles tendon-include mostly surgical repair and/or conservative approaches, including biophysical modalities such as rehabilitation and cryotherapy. Unfortunately, the fibrovascular scar formed during healing possesses inferior mechanical and biochemical properties, resulting in compromised tissue functionality. Regenerative approaches have sought to augment the injured tissue with cells, scaffolds, bioactive agents, and mechanical stimulation to improve the natural healing response. The key challenges in restoring full T/L function following injury include optimal combination of these biological agents as well as their delivery to the injury site. A greater understanding of the molecular mechanisms involved in T/L development and natural healing, coupled with the capability of producing complex biomaterials to deliver multiple biofactors with high spatiotemporal resolution and specificity, should lead to regenerative procedures that more closely recapitulate T/L morphogenesis, thereby offering future patients the prospect of T/L regeneration, as opposed to simple tissue repair.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Extracellular Vesicle‐Educated Macrophages Promote Early Achilles Tendon Healing

            Abstract Tendon healing follows a complex series of coordinated events, which ultimately produces a mechanically inferior tissue more scar‐like than native tendon. More regenerative healing occurs when anti‐inflammatory M2 macrophages play a more dominant role. Mesenchymal stromal/stem cells (MSCs) are able to polarize macrophages to an M2 immunophenotype via paracrine mechanisms. We previously reported that coculture of CD14+ macrophages (MQs) with MSCs resulted in a unique M2‐like macrophage. More recently, we generated M2‐like macrophages using only extracellular vesicles (EVs) isolated from MSCs creating “EV‐educated macrophages” (also called exosome‐educated macrophages [EEMs]), thereby foregoing direct use of MSCs. For the current study, we hypothesized that cell therapy with EEMs would improve in vivo tendon healing by modulating tissue inflammation and endogenous macrophage immunophenotypes. We evaluated effects of EEMs using a mouse Achilles tendon rupture model and compared results to normal tendon healing (without any biologic intervention), MSCs, MQs, or EVs. We found that exogenous administration of EEMs directly into the wound promoted a healing response that was significantly more functional and more regenerative. Injured tendons treated with exogenous EEMs exhibited (a) improved mechanical properties, (b) reduced inflammation, and (c) earlier angiogenesis. Treatment with MSC‐derived EVs alone were less effective functionally but stimulated a biological response as evidenced by an increased number of endothelial cells and decreased M1/M2 ratio. Because of their regenerative and immunomodulatory effects, EEM treament could provide a novel strategy to promote wound healing in this and various other musculoskeletal injuries or pathologies where inflammation and inadequate healing is problematic. Stem Cells 2019;37:652–662
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Effect of aging and exercise on the tendon

                Bookmark

                Author and article information

                Contributors
                Journal
                Front Sports Act Living
                Front Sports Act Living
                Front. Sports Act. Living
                Frontiers in Sports and Active Living
                Frontiers Media S.A.
                2624-9367
                06 January 2023
                2022
                : 4
                : 1081129
                Affiliations
                [ 1 ]Department of Surgery, Faculty of Kinesiology, McCaig Institute for Bone and Joint Health, University of Calgary , Calgary, AB, Canada
                [ 2 ]Department of Molecular Medicine and Surgery, Karolinska Institutet , Stockholm, Sweden
                Author notes

                Edited by: Gregoire P. Millet, Université de Lausanne, Switzerland

                Reviewed by: Alison Agres, Julius Wolff Institute for Biomechanics and Musculoskeletal Regeneration, Charité Medical University of Berlin, Germany Daniel W.D. West, Toronto Rehabilitation Institute, University Health Network, Canada

                [* ] Correspondence: David A. Hart hartd@ 123456ucalgary.ca

                Specialty Section: This article was submitted to Injury Prevention and Rehabilitation, a section of the journal Frontiers in Sports and Active Living

                Article
                10.3389/fspor.2022.1081129
                9853460
                36685063
                2f02dd54-1fe8-4664-8b85-3176e850fc4f
                © 2023 Hart, Ahmed and Ackermann.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 26 October 2022
                : 09 December 2022
                Page count
                Figures: 0, Tables: 0, Equations: 0, References: 157, Pages: 0, Words: 0
                Categories
                Sports and Active Living
                Review

                tendon injuries,tendon rupture,biomarkers,improved outcomes,clinical trial design,prognostic biomarkers

                Comments

                Comment on this article