31
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Breast and prostate cancer patients differ significantly in their serum Thymidine kinase 1 (TK1) specific activities compared with those hematological malignancies and blood donors: implications of using serum TK1 as a biomarker

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Thymidine kinase 1 (TK1) is a cellular enzyme involved in DNA precursor synthesis, and its activity has been used as a proliferation marker for monitoring malignant diseases. Here, for the first time, we evaluated both TK1 activity and protein levels in sera from patients with different malignancies.

          Methods

          Serum samples from patients with myelodysplastic syndrome (MDS, n = 22), breast cancer (n = 42), prostate cancer (n = 47) and blood donors (n = 30) were analyzed for TK1 protein and activity levels, using a serum TK1 (STK1) protein assay based on antibodies and an activity assay that measured [ 3H]-deoxythymidine (dThd) phosphorylation. The molecular forms of TK1 in sera from some of these patients were analyzed using size-exclusion chromatography.

          Results

          Mean STK1 activities in sera from MDS, breast and prostate cancer were 11 ± 17.5, 6.7 ± 19 and 1.8 ± 1.4 pmol/min/mL, differing significantly from blood donors (mean ± standard deviation (SD) = 1.1 ± 0.9 pmol/min/mL). Serum TK1 protein (25 kDa polypeptide) levels were also significantly higher in MDS, breast, prostate cancer compared to blood donors (mean ± SD = 19 ± 9, 22 ± 11, 20 ± 12, and 5 ± 3.5 ng/mL, respectively). The STK1 specific activities of sera from patients with MDS and blood donors were significantly higher when compared with activities in sera from breast and prostate cancer patients. Size-exclusion analysis of sera from breast and prostate cancer showed that the detected active TK1 was primarily a high molecular weight complex, similar to the forms found in sera from MDS patients and blood donors. However, Western blotting demonstrated high TK1 25 kDa protein levels in fractions lacking TK1 activity in sera from cases with breast and prostate cancer.

          Conclusions

          These results demonstrate that there are differences in the specific activities and the subunit compositions of STK1 in hematological malignancies compared with breast and prostate cancer. This fact has several important implications for the use of STK1 as a tumor biomarker. One is that STK1 protein assays may differentiate early-stage tumor development in breast and prostate cancer more effectively than STK1 activity assays.

          Electronic supplementary material

          The online version of this article (doi:10.1186/s12885-015-1073-8) contains supplementary material, which is available to authorized users.

          Related collections

          Most cited references36

          • Record: found
          • Abstract: found
          • Article: not found

          An update of the Gleason grading system.

          An update is provided of the Gleason grading system, which has evolved significantly since its initial description. A search was performed using the MEDLINE(R) database and referenced lists of relevant studies to obtain articles concerning changes to the Gleason grading system. Since the introduction of the Gleason grading system more than 40 years ago many aspects of prostate cancer have changed, including prostate specific antigen testing, transrectal ultrasound guided prostate needle biopsy with greater sampling, immunohistochemistry for basal cells that changed the classification of prostate cancer and new prostate cancer variants. The system was updated at a 2005 consensus conference of international experts in urological pathology, under the auspices of the International Society of Urological Pathology. Gleason score 2-4 should rarely if ever be diagnosed on needle biopsy, certain patterns (ie poorly formed glands) originally considered Gleason pattern 3 are now considered Gleason pattern 4 and all cribriform cancer should be graded pattern 4. The grading of variants and subtypes of acinar adenocarcinoma of the prostate, including cancer with vacuoles, foamy gland carcinoma, ductal adenocarcinoma, pseudohyperplastic carcinoma and small cell carcinoma have also been modified. Other recent issues include reporting secondary patterns of lower and higher grades when present to a limited extent, and commenting on tertiary grade patterns which differ depending on whether the specimen is from needle biopsy or radical prostatectomy. Whereas there is little debate on the definition of tertiary pattern on needle biopsy, this issue is controversial in radical prostatectomy specimens. Although tertiary Gleason patterns are typically added to pathology reports, they are routinely omitted in practice since there is no simple way to incorporate them in predictive nomograms/tables, research studies and patient counseling. Thus, a modified radical prostatectomy Gleason scoring system was recently proposed to incorporate tertiary Gleason patterns in an intuitive fashion. For needle biopsy with different cores showing different grades, the current recommendation is to report the grades of each core separately, whereby the highest grade tumor is selected as the grade of the entire case to determine treatment, regardless of the percent involvement. After the 2005 consensus conference several studies confirmed the superiority of the modified Gleason system as well as its impact on urological practice. It is remarkable that nearly 40 years after its inception the Gleason grading system remains one of the most powerful prognostic factors for prostate cancer. This system has remained timely because of gradual adaptations by urological pathologists to accommodate the changing practice of medicine. Copyright 2010 American Urological Association. Published by Elsevier Inc. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Structure and function of cellular deoxyribonucleoside kinases.

            Deoxyribonucleoside kinases phosphorylate deoxyribonucleosides, a crucial reaction in biosynthesis of DNA precursors through the salvage pathway. Their medical interest stems from their activation of a number of anticancer and antiviral drugs such as 2-chloro-2'-deoxyadenosine, azidothymidine and acyclovir. Here we review what is presently known about each of the mammalian kinases as well as some other members of the deoxyribonucleoside kinase family. A description of the biochemical properties of the enzymes is followed by an overview of the structural studies made on this family of enzymes, including the catalytic mechanism as well as the mechanism for feedback inhibition. A presentation of homology models of other proteins in the family is made and, finally, the determinants of substrate and substrate analog specificities are described.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The proliferation marker thymidine kinase 1 in clinical use.

              Tumor-related biomarkers are used for the diagnosis, prognosis and monitoring of treatments and follow-up of cancer patients, although only a few are fully accepted for the detection of invisible/visible tumors in health screening. Thymidine kinase 1 (TK1), a cell cycle-dependent and thus a proliferation-related marker, has been extensively studied during the last decades, using both biochemical and immunological techniques. Therefore, TK1 is an emerging potential proliferating biomarker in oncology that may be used for the prognosis and monitoring of tumor therapy, relapse and survival. In addition, TK1 concentration in serum (STK1p) is a useful biomarker in healthy screening for the detection of potential malignancy development as well as the identification of early-stage tumors, with a few false-positive cases (ROC value, 0.96; tumor proliferation sensitivity, 0.80; specificity, 0.99). In this review, we examine results regarding the expression of STK1p and TK1 in relation to cancer patients and STK1p in health screening published between 2000 and 2012. The use of tumor-related markers recommended by international cancer organizations is also discussed. This review provides valuable information for applications in tumor patients, in health screening and for cancer research.
                Bookmark

                Author and article information

                Contributors
                kirankumar.j@slu.se
                staffan.eriksson@slu.se
                lasse.hansson@me.com
                Journal
                BMC Cancer
                BMC Cancer
                BMC Cancer
                BioMed Central (London )
                1471-2407
                18 February 2015
                18 February 2015
                2015
                : 15
                : 66
                Affiliations
                [ ]Department of Anatomy, Physiology, and Biochemistry, Veterinary Medicine and Animal Science center, Swedish University of Agricultural Sciences, P.O. Box 7011, , S-75007 Uppsala, Sweden
                [ ]Department of Laboratory Medicine, Karolinska Institute, Stockholm, Sweden
                Article
                1073
                10.1186/s12885-015-1073-8
                4336758
                25881026
                2f125d6f-9ef5-4b85-b8f6-5c338e57f937
                © Jagarlamudi et al.; licensee BioMed Central. 2015

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

                History
                : 22 July 2014
                : 6 February 2015
                Categories
                Research Article
                Custom metadata
                © The Author(s) 2015

                Oncology & Radiotherapy
                serum thymidine kinase 1,stk1 protein assays,size exclusion chromatography,anti-human tk1 antibodies,tk1 specific activity

                Comments

                Comment on this article