+1 Recommend
0 collections
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Identification of a novel B-cell epitope in the spike protein of porcine epidemic diarrhea virus

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.



          Porcine epidemic diarrhea virus (PEDV) infection causes an acute enteric tract infectious disease characterized by vomiting, anorexia, dehydration, weight loss and high mortality in neonatal piglets. During PEDV infection, the spike protein (S) is a major virion structural protein interacting with receptors and inducing neutralizing antibodies. However, the neutralizing B-cell epitopes within PEDV S protein have not been well studied.


          To accurately identify the important immunodominant region of S1, the purified truncated S1 proteins (SA, SB, SC, SD and SE) were used to immunize BALB/c mice to prepare polyclonal antibodies. The antisera titers were determined by indirect ELISA, western blot and IFA after four immunizations to find the important immunodominant region of S1, and then purified the immunodominant region of S1 protein and immunized mice to generate the special antibodies, and then used recombinant peptides to determine the B-cell epitopes of monoclonal antibodies.


          Five antisera of recombinant proteins of the spike protein region of PEDV were generated and we found that only the polyclonal antibody against part of the S1 region (signed as SE protein, residues 666–789) could recognize the native PEDV. Purified SE protein was used to immunize BALB/c mice and generate mAb 2E10. Pepscan of the SE protein demonstrated that SE16 ( 722 SSTFNSTREL 731 ) is the minimal linear epitope required for reactivity with the mAb 2E10. Further investigation indicated that the epitope SE16 was localized on the surface of PEDV S protein in the 3D structure.


          A mAb 2E10 that is specifically bound to PEDV was generated and identified a specific linear B-cell epitope (SE16, 722 SSTFNSTREL 731 ) of the mAb. The epitope region of PEDV S1 localized in the different regions in comparison with the earlier identified epitopes. These findings enhance the understanding of the PEDV spike protein structure for vaccine design and provide a potential use for developing diagnostic methods to detect PEDV.

          Related collections

          Most cited references 23

          • Record: found
          • Abstract: found
          • Article: not found

          Emergence of Porcine epidemic diarrhea virus in the United States: clinical signs, lesions, and viral genomic sequences.

          During the 10 days commencing April 29, 2013, the Iowa State University Veterinary Diagnostic Laboratory received the first 4 of many submissions from swine farms experiencing explosive epidemics of diarrhea and vomiting affecting all ages, with 90-95% mortality in suckling pigs. Histology revealed severe atrophy of villi in all segments of the small intestines with occasional villus-epithelial syncytial cells, but testing for rotaviruses and Transmissible gastroenteritis virus (Alphacoronavirus 1) were negative. Negative-staining electron microscopy of feces revealed coronavirus-like particles and a pan-coronavirus polymerase chain reaction (PCR) designed to amplify a conserved region of the polymerase gene for all members in the family Coronaviridae produced expected 251-bp amplicons. Subsequent sequencing and analysis revealed 99.6-100% identity among the PCR amplicons from the 4 farms and 97-99% identity to the corresponding portion of the polymerase gene of Porcine epidemic diarrhea virus (PEDV) strains, with the highest identity (99%) to strains from China in 2012. Findings were corroborated at National Veterinary Services Laboratories using 2 nested S-gene and 1 nested N-gene PCR tests where the sequenced amplicons also had the highest identity with 2012 China strains. Whole genome sequence for the virus from 2 farms in 2 different states using next-generation sequencing technique was compared to PEDV sequences available in GenBank. The 2013 U.S. PEDV had 96.6-99.5% identity with all known PEDV strains and the highest identity (>99.0%) to some of the 2011-2012 Chinese strains. The nearly simultaneous outbreaks of disease, and high degree of homology (99.6-100%) between the PEDV strains from the 4 unrelated farms, suggests a common source of virus.
            • Record: found
            • Abstract: found
            • Article: not found

            Porcine epidemic diarrhoea virus: a comprehensive review of molecular epidemiology, diagnosis, and vaccines

            The porcine epidemic diarrhoea virus (PEDV), a member of the Coronaviridae family, causes acute diarrhoea and dehydration in pigs. Although it was first identified in Europe, it has become increasingly problematic in many Asian countries, including Korea, China, Japan, the Philippines, and Thailand. The economic impacts of the PEDV are substantial, given that it results in significant morbidity and mortality in neonatal piglets and is associated with increased costs related to vaccination and disinfection. Recently, progress has been made in understanding the molecular epidemiology of PEDV, thereby leading to the development of new vaccines. In the current review, we first describe the molecular and genetic characteristics of the PEDV. Then we discuss its molecular epidemiology and diagnosis, what vaccines are available, and how PEDV can be treated.
              • Record: found
              • Abstract: found
              • Article: not found

              A new coronavirus-like particle associated with diarrhea in swine

              Summary Coronavirus-like particles were detected by electron microscopy in the intestinal contents of pigs during a diarrheal outbreak on 4 swine breeding farms. Diarrhea was reproduced in experimental pigs with one of the isolates, designated CV777, which was found to be distinct from the 2 known porcine coronaviruses, transmissible gastroenteritis virus and hemagglutinating encephalomyelitis virus.

                Author and article information

                Virol J
                Virol. J
                Virology Journal
                BioMed Central (London )
                3 April 2020
                3 April 2020
                : 17
                [1 ]GRID grid.410727.7, ISNI 0000 0001 0526 1937, Shanghai Veterinary Research Institute, , Chinese Academy of Agricultural Sciences, ; Shanghai, People’s Republic of China
                [2 ]GRID grid.268415.c, Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonosis, , Yangzhou University, ; Yangzhou, People’s Republic of China
                [3 ]GRID grid.463053.7, ISNI 0000 0000 9655 6126, College of Life Science, , Xinyang Normal University, ; Xinyang, China
                © The Author(s) 2020

                Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit The Creative Commons Public Domain Dedication waiver ( applies to the data made available in this article, unless otherwise stated in a credit line to the data.

                Funded by: FundRef, National Natural Science Foundation of China;
                Award ID: 31872478
                Award Recipient :
                Funded by: National Key Research and Development Programs of China
                Award ID: 2016YFD0500103
                Award Recipient :
                Funded by: FundRef, Natural Science Foundation of Shanghai;
                Award ID: 19ZR1469100
                Award Recipient :
                Funded by: FundRef, China Postdoctoral Science Foundation;
                Award ID: 2017M611074
                Award Recipient :
                Custom metadata
                © The Author(s) 2020

                Microbiology & Virology

                spike protein, monoclonal antibody, epitope, pedv


                Comment on this article