+1 Recommend
0 collections
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Biomarkers of tumor invasiveness in proteomics (Review)

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.


          Over the past two decades, quantitative proteomics has emerged as an important tool for deciphering the complex molecular events involved in cancers. The number of references involving studies on the cancer metastatic process has doubled since 2010, while the last 5 years have seen the development of novel technologies combining deep proteome coverage capabilities with quantitative consistency and accuracy. To highlight key findings within this huge amount of information, the present review identified a list of tumor invasive biomarkers based on both the literature and data collected on a biocollection of experimental cell lines, tumor models of increasing invasiveness and tumor samples from patients with colorectal or breast cancer. Crossing these different data sources led to 76 proteins of interest out of 1,245 mentioned in the literature. Information on these proteins can potentially be translated into clinical prospects, since they represent potential targets for the development and evaluation of innovative therapies, alone or in combination. Herein, a systematical review of the biology of each of these proteins, including their specific subcellular/extracellular or multiple localizations is presented. Finally, as an important advantage of quantitative proteomics is the ability to provide data on all these molecules simultaneously in cell pellets, body fluids or paraffin-embedded sections of tumors/invaded tissues, the significance of some of their interconnections is discussed.

          Related collections

          Most cited references 330

          • Record: found
          • Abstract: found
          • Article: not found

          Molecular portraits of human breast tumours.

          Human breast tumours are diverse in their natural history and in their responsiveness to treatments. Variation in transcriptional programs accounts for much of the biological diversity of human cells and tumours. In each cell, signal transduction and regulatory systems transduce information from the cell's identity to its environmental status, thereby controlling the level of expression of every gene in the genome. Here we have characterized variation in gene expression patterns in a set of 65 surgical specimens of human breast tumours from 42 different individuals, using complementary DNA microarrays representing 8,102 human genes. These patterns provided a distinctive molecular portrait of each tumour. Twenty of the tumours were sampled twice, before and after a 16-week course of doxorubicin chemotherapy, and two tumours were paired with a lymph node metastasis from the same patient. Gene expression patterns in two tumour samples from the same individual were almost always more similar to each other than either was to any other sample. Sets of co-expressed genes were identified for which variation in messenger RNA levels could be related to specific features of physiological variation. The tumours could be classified into subtypes distinguished by pervasive differences in their gene expression patterns.
            • Record: found
            • Abstract: found
            • Article: found

            Fatty acid synthase and the lipogenic phenotype in cancer pathogenesis.

            There is a renewed interest in the ultimate role of fatty acid synthase (FASN)--a key lipogenic enzyme catalysing the terminal steps in the de novo biogenesis of fatty acids--in cancer pathogenesis. Tumour-associated FASN, by conferring growth and survival advantages rather than functioning as an anabolic energy-storage pathway, appears to necessarily accompany the natural history of most human cancers. A recent identification of cross-talk between FASN and well-established cancer-controlling networks begins to delineate the oncogenic nature of FASN-driven lipogenesis. FASN, a nearly-universal druggable target in many human carcinomas and their precursor lesions, offers new therapeutic opportunities for metabolically treating and preventing cancer.
              • Record: found
              • Abstract: found
              • Article: not found

              VEGFR1-positive haematopoietic bone marrow progenitors initiate the pre-metastatic niche.

              The cellular and molecular mechanisms by which a tumour cell undergoes metastasis to a predetermined location are largely unknown. Here we demonstrate that bone marrow-derived haematopoietic progenitor cells that express vascular endothelial growth factor receptor 1 (VEGFR1; also known as Flt1) home to tumour-specific pre-metastatic sites and form cellular clusters before the arrival of tumour cells. Preventing VEGFR1 function using antibodies or by the removal of VEGFR1(+) cells from the bone marrow of wild-type mice abrogates the formation of these pre-metastatic clusters and prevents tumour metastasis, whereas reconstitution with selected Id3 (inhibitor of differentiation 3)-competent VEGFR1+ cells establishes cluster formation and tumour metastasis in Id3 knockout mice. We also show that VEGFR1+ cells express VLA-4 (also known as integrin alpha4beta1), and that tumour-specific growth factors upregulate fibronectin--a VLA-4 ligand--in resident fibroblasts, providing a permissive niche for incoming tumour cells. Conditioned media obtained from distinct tumour types with unique patterns of metastatic spread redirected fibronectin expression and cluster formation, thereby transforming the metastatic profile. These findings demonstrate a requirement for VEGFR1+ haematopoietic progenitors in the regulation of metastasis, and suggest that expression patterns of fibronectin and VEGFR1+VLA-4+ clusters dictate organ-specific tumour spread.

                Author and article information

                Int J Oncol
                Int. J. Oncol
                International Journal of Oncology
                D.A. Spandidos
                August 2020
                28 May 2020
                28 May 2020
                : 57
                : 2
                : 409-432
                [1 ]CRCINA, Inserm, Université d'Angers, F-44000 Nantes
                [2 ]Paul Papin ICO Cancer Center, CRCINA, Inserm, Université d'Angers, F-44000 Nantes, France
                Author notes
                Correspondence to: Dr Daniel L. Pouliquen, Paul Papin ICO Cancer Center, CRCINA, Inserm UMR 1232, 15 Rue André Boquel, 49055 Angers, France, E-mail: daniel.pouliquen@
                Copyright: © Pouliquen et al.

                This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.



                Comment on this article