15
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Supplementation of Kiwifruit Polyphenol Extract Attenuates High Fat Diet Induced Intestinal Barrier Damage and Inflammation via Reshaping Gut Microbiome

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background: Impaired intestinal integrity and barrier function is associated with various diseases, including inflammatory bowel disease and metabolic syndrome. In recent years, plant-derived polyphenols have attracted much attention on regulating intestinal barrier function. Kiwifruit was recorded as a traditional Chinese medicine which can treat gastrointestinal diseases, but the mechanism was still unclear. In this study we investigated the effects of kiwifruit polyphenol extracts (KPE) on high fat diet induced intestinal permeability and its possible mechanism.

          Results: Dietary supplementation of KPE with 50 or 100 mg/kg bw could inhibit the increase of intestinal permeability caused by HFD and promote the expression of tight junction protein (Claudin-1, Occludin and ZO-1). From microbial diversity and RT-PCR, KPE administration reshaping gut microbiome, the relative abundance of Lactobacillus and Bifidobacterium were increased, and the relative abundance of Clostridium and Desulfovibrionaceae were decreased. The changes in microbe may influence intestinal inflammatory status. Then the expression of TLRs and cytokines were detected. KPE supplementation showed anti-inflammatory effect, the expression of IL-10 was increased and the expression of TLR-2, TLR-4, TNF-α and IL-1β were decreased. Correlation analysis indicated that the expression of tight junction protein was negative correlation with TLR-2, TLR-4, TNF-α and IL-1β expression, but positively correlated with Bacteroidete, Bifidobacterium and IL-10 expression; the expression of Bacteroidete, Lactobacillusand and Bifidobacterium were negative correlation with TLR4, TNF-α, and IL-1β expression.

          Conclusion: KPE treatment relieve the intestinal damage caused by HFD, which was related to the regulation of Bacteroidete, Lactobacillusand, and Bifidobacterium expression and inhibit intestinal inflammation. KPE could be a functional component for preventing gut damage and its related disease.

          Related collections

          Most cited references40

          • Record: found
          • Abstract: found
          • Article: not found
          Is Open Access

          A human gut microbial gene catalogue established by metagenomic sequencing.

          To understand the impact of gut microbes on human health and well-being it is crucial to assess their genetic potential. Here we describe the Illumina-based metagenomic sequencing, assembly and characterization of 3.3 million non-redundant microbial genes, derived from 576.7 gigabases of sequence, from faecal samples of 124 European individuals. The gene set, approximately 150 times larger than the human gene complement, contains an overwhelming majority of the prevalent (more frequent) microbial genes of the cohort and probably includes a large proportion of the prevalent human intestinal microbial genes. The genes are largely shared among individuals of the cohort. Over 99% of the genes are bacterial, indicating that the entire cohort harbours between 1,000 and 1,150 prevalent bacterial species and each individual at least 160 such species, which are also largely shared. We define and describe the minimal gut metagenome and the minimal gut bacterial genome in terms of functions present in all individuals and most bacteria, respectively.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Changes in gut microbiota control inflammation in obese mice through a mechanism involving GLP-2-driven improvement of gut permeability

            Background and aims: Obese and diabetic mice display enhanced intestinal permeability and metabolic endotoxaemia that participate in the occurrence of metabolic disorders. Our recent data support the idea that a selective increase of Bifidobacterium spp. reduces the impact of high-fat diet-induced metabolic endotoxaemia and inflammatory disorders. Here, we hypothesised that prebiotic modulation of gut microbiota lowers intestinal permeability, by a mechanism involving glucagon-like peptide-2 (GLP-2) thereby improving inflammation and metabolic disorders during obesity and diabetes. Methods: Study 1: ob/ob mice (Ob-CT) were treated with either prebiotic (Ob-Pre) or non-prebiotic carbohydrates as control (Ob-Cell). Study 2: Ob-CT and Ob-Pre mice were treated with GLP-2 antagonist or saline. Study 3: Ob-CT mice were treated with a GLP-2 agonist or saline. We assessed changes in the gut microbiota, intestinal permeability, gut peptides, intestinal epithelial tight-junction proteins ZO-1 and occludin (qPCR and immunohistochemistry), hepatic and systemic inflammation. Results: Prebiotic-treated mice exhibited a lower plasma lipopolysaccharide (LPS) and cytokines, and a decreased hepatic expression of inflammatory and oxidative stress markers. This decreased inflammatory tone was associated with a lower intestinal permeability and improved tight-junction integrity compared to controls. Prebiotic increased the endogenous intestinotrophic proglucagon-derived peptide (GLP-2) production whereas the GLP-2 antagonist abolished most of the prebiotic effects. Finally, pharmacological GLP-2 treatment decreased gut permeability, systemic and hepatic inflammatory phenotype associated with obesity to a similar extent as that observed following prebiotic-induced changes in gut microbiota. Conclusion: We found that a selective gut microbiota change controls and increases endogenous GLP-2 production, and consequently improves gut barrier functions by a GLP-2-dependent mechanism, contributing to the improvement of gut barrier functions during obesity and diabetes.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The intestinal barrier: a fundamental role in health and disease.

              The gastrointestinal mucosa constitutes a critical barrier where millions of microbes and environmental antigens come in close contact with the host immune system. Intestinal barrier defects have been associated with a broad range of diseases and therefore denote a new therapeutic target. Areas covered: This review is based on an extensive literature search in PubMed of how the intestinal barrier contributes to health and as a trigger for disease. It discusses the anatomy of the intestinal barrier and explains the available methods to evaluate its function. Also reviewed is the importance of diet and lifestyle factors on intestinal barrier function, and three prototypes of chronic diseases (inflammatory bowel disease, celiac disease and nonalcoholic fatty liver disease) that have been linked to barrier defects are discussed. Expert commentary: The intestinal barrier has been investigated by various methods, but correlation of results across studies is difficult, representing a major shortcoming in the field. New upcoming techniques and research on the effect of barrier-restoring therapeutics may improve our current understanding of the gut barrier, and provide a step forward towards personalised medicine.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Nutr
                Front Nutr
                Front. Nutr.
                Frontiers in Nutrition
                Frontiers Media S.A.
                2296-861X
                30 August 2021
                2021
                : 8
                : 702157
                Affiliations
                School of Public Health, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University , Guiyang, China
                Author notes

                Edited by: Quancai Sun, Jiangsu University, China

                Reviewed by: Jinyao Li, Xinjiang University, China; Yang Yuhui, Henan University of Technology, China

                *Correspondence: Yan Zhou zhouyan6125@ 123456126.com

                This article was submitted to Nutrition and Food Science Technology, a section of the journal Frontiers in Nutrition

                †These authors have contributed equally to this work

                Article
                10.3389/fnut.2021.702157
                8435571
                2f311711-7491-4e2a-ab7d-943c717ed9fb
                Copyright © 2021 Yuan, Chen, Su, Zhou and Sun.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 29 April 2021
                : 05 August 2021
                Page count
                Figures: 7, Tables: 6, Equations: 0, References: 40, Pages: 15, Words: 7528
                Funding
                Funded by: Foundation for Innovative Research Groups of the National Natural Science Foundation of China 10.13039/501100012659
                Funded by: Science and Technology Program of Guizhou Province 10.13039/501100018555
                Funded by: Department of Education of Guizhou Province 10.13039/501100010828
                Categories
                Nutrition
                Original Research

                kiwifruit,polyphenols,high-fat diet,intestinal damage,intestinal flora

                Comments

                Comment on this article