12
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Measured and estimated glomerular filtration rate: current status and future directions

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Evaluation of glomerular filtration rate (GFR) is central to the assessment of kidney function in medical practice, research and public health. Measured GFR (mGFR) remains the reference standard, but the past 20 years have seen major advances in estimated GFR (eGFR). Both eGFR and mGFR are associated with error compared with true GFR. eGFR is now recommended by clinical practice guidelines, regulatory agencies and public health agencies for the initial evaluation of GFR, with measured GFR (mGFR) typically considered an important confirmatory test, depending on how accurate the assessment of GFR needs to be for application to the clinical, research or public health setting. Our approach is to use initial and confirmatory tests as needed to develop a final assessment of true GFR. We suggest that GFR evaluation might be improved by more complete implementation of current recommendations and by further research to improve the accuracy of mGFR and eGFR.

          Related collections

          Most cited references57

          • Record: found
          • Abstract: found
          • Article: not found

          A new equation to estimate glomerular filtration rate.

          Equations to estimate glomerular filtration rate (GFR) are routinely used to assess kidney function. Current equations have limited precision and systematically underestimate measured GFR at higher values. To develop a new estimating equation for GFR: the Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI) equation. Cross-sectional analysis with separate pooled data sets for equation development and validation and a representative sample of the U.S. population for prevalence estimates. Research studies and clinical populations ("studies") with measured GFR and NHANES (National Health and Nutrition Examination Survey), 1999 to 2006. 8254 participants in 10 studies (equation development data set) and 3896 participants in 16 studies (validation data set). Prevalence estimates were based on 16,032 participants in NHANES. GFR, measured as the clearance of exogenous filtration markers (iothalamate in the development data set; iothalamate and other markers in the validation data set), and linear regression to estimate the logarithm of measured GFR from standardized creatinine levels, sex, race, and age. In the validation data set, the CKD-EPI equation performed better than the Modification of Diet in Renal Disease Study equation, especially at higher GFR (P < 0.001 for all subsequent comparisons), with less bias (median difference between measured and estimated GFR, 2.5 vs. 5.5 mL/min per 1.73 m(2)), improved precision (interquartile range [IQR] of the differences, 16.6 vs. 18.3 mL/min per 1.73 m(2)), and greater accuracy (percentage of estimated GFR within 30% of measured GFR, 84.1% vs. 80.6%). In NHANES, the median estimated GFR was 94.5 mL/min per 1.73 m(2) (IQR, 79.7 to 108.1) vs. 85.0 (IQR, 72.9 to 98.5) mL/min per 1.73 m(2), and the prevalence of chronic kidney disease was 11.5% (95% CI, 10.6% to 12.4%) versus 13.1% (CI, 12.1% to 14.0%). The sample contained a limited number of elderly people and racial and ethnic minorities with measured GFR. The CKD-EPI creatinine equation is more accurate than the Modification of Diet in Renal Disease Study equation and could replace it for routine clinical use. National Institute of Diabetes and Digestive and Kidney Diseases.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found

            Prediction of Creatinine Clearance from Serum Creatinine

            A formula has been developed to predict creatinine clearance (C cr ) from serum creatinine (S cr ) in adult males: Ccr = (140 – age) (wt kg)/72 × S cr (mg/100ml) (15% less in females). Derivation included the relationship found between age and 24-hour creatinine excretion/kg in 249 patients aged 18–92. Values for C cr were predicted by this formula and four other methods and the results compared with the means of two 24-hour C cr’s measured in 236 patients. The above formula gave a correlation coefficient between predicted and mean measured Ccr·s of 0.83; on average, the difference between predicted and mean measured values was no greater than that between paired clearances. Factors for age and body weight must be included for reasonable prediction.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Decline in estimated glomerular filtration rate and subsequent risk of end-stage renal disease and mortality.

              The established chronic kidney disease (CKD) progression end point of end-stage renal disease (ESRD) or a doubling of serum creatinine concentration (corresponding to a change in estimated glomerular filtration rate [GFR] of −57% or greater) is a late event. To characterize the association of decline in estimated GFR with subsequent progression to ESRD with implications for using lesser declines in estimated GFR as potential alternative end points for CKD progression. Because most people with CKD die before reaching ESRD, mortality risk also was investigated. Individual meta-analysis of 1.7 million participants with 12,344 ESRD events and 223,944 deaths from 35 cohorts in the CKD Prognosis Consortium with a repeated measure of serum creatinine concentration over 1 to 3 years and outcome data. Transfer of individual participant data or standardized analysis of outputs for random-effects meta-analysis conducted between July 2012 and September 2013, with baseline estimated GFR values collected from 1975 through 2012. End-stage renal disease (initiation of dialysis or transplantation) or all-cause mortality risk related to percentage change in estimated GFR over 2 years, adjusted for potential confounders and first estimated GFR. The adjusted hazard ratios (HRs) of ESRD and mortality were higher with larger estimated GFR decline. Among participants with baseline estimated GFR of less than 60 mL/min/1.73 m2, the adjusted HRs for ESRD were 32.1 (95% CI, 22.3-46.3) for changes of −57% in estimated GFR and 5.4 (95% CI, 4.5-6.4) for changes of −30%. However, changes of −30% or greater (6.9% [95% CI, 6.4%-7.4%] of the entire consortium) were more common than changes of −57% (0.79% [95% CI, 0.52%-1.06%]). This association was strong and consistent across the length of the baseline period (1 to 3 years), baseline estimated GFR, age, diabetes status, or albuminuria. Average adjusted 10-year risk of ESRD (in patients with a baseline estimated GFR of 35 mL/min/1.73 m2) was 99% (95% CI, 95%-100%) for estimated GFR change of −57%, was 83% (95% CI, 71%-93%) for estimated GFR change of −40%, and was 64% (95% CI, 52%-77%) for estimated GFR change of −30% vs 18% (95% CI, 15%-22%) for estimated GFR change of 0%. Corresponding mortality risks were 77% (95% CI, 71%-82%), 60% (95% CI, 56%-63%), and 50% (95% CI, 47%-52%) vs 32% (95% CI, 31%-33%), showing a similar but weaker pattern. Declines in estimated GFR smaller than a doubling of serum creatinine concentration occurred more commonly and were strongly and consistently associated with the risk of ESRD and mortality, supporting consideration of lesser declines in estimated GFR (such as a 30% reduction over 2 years) as an alternative end point for CKD progression.
                Bookmark

                Author and article information

                Journal
                Nature Reviews Nephrology
                Nat Rev Nephrol
                Springer Science and Business Media LLC
                1759-5061
                1759-507X
                September 16 2019
                Article
                10.1038/s41581-019-0191-y
                31527790
                2f31bad4-28c7-41ab-b49c-c3c7aebb0916
                © 2019

                http://www.springer.com/tdm

                History

                Comments

                Comment on this article