0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Neural timing is linked to speech perception in noise.

      The Journal of neuroscience : the official journal of the Society for Neuroscience
      Society for Neuroscience

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Understanding speech in background noise is challenging for every listener, including those with normal peripheral hearing. This difficulty is attributable in part to the disruptive effects of noise on neural synchrony, resulting in degraded representation of speech at cortical and subcortical levels as reflected by electrophysiological responses. These problems are especially pronounced in clinical populations such as children with learning impairments. Given the established effects of noise on evoked responses, we hypothesized that listening-in-noise problems are associated with degraded processing of timing information at the brainstem level. Participants (66 children; ages, 8-14 years; 22 females) were divided into groups based on their performance on clinical measures of speech-in-noise (SIN) perception and reading. We compared brainstem responses to speech syllables between top and bottom SIN and reading groups in the presence and absence of competing multitalker babble. In the quiet condition, neural response timing was equivalent between groups. In noise, however, the bottom groups exhibited greater neural delays relative to the top groups. Group-specific timing delays occurred exclusively in response to the noise-vulnerable formant transition, not to the more perceptually robust, steady-state portion of the stimulus. These results demonstrate that neural timing is disrupted by background noise and that greater disruptions are associated with the inability to perceive speech in challenging listening conditions.

          Related collections

          Author and article information

          Journal
          20371812
          2862599
          10.1523/JNEUROSCI.0107-10.2010

          Comments

          Comment on this article

          scite_