20
views
0
recommends
+1 Recommend
1 collections
    0
    shares

      Neuropsychiatric Disease and Treatment (submit here)

      This international, peer-reviewed Open Access journal by Dove Medical Press focuses on all aspects of neuropsychiatric and neurological disorders. Sign up for email alerts here.

      63,741 Monthly downloads/views I 2.989 Impact Factor I 4.5 CiteScore I 1.09 Source Normalized Impact per Paper (SNIP) I 0.744 Scimago Journal & Country Rank (SJR)

      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Microstructural changes of the whole brain in patients with comitant strabismus: evidence from a diffusion tensor imaging study

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Objective

          The aim of this study was to investigate the fractional anisotropy (FA) and mean diffusivity (MD) using a diffusion tensor imaging technique and whole-brain voxel-based analysis in patients with comitant strabismus.

          Patients and methods

          A total of 19 (nine males and ten females) patients with comitant strabismus and 19 age-, sex-, and education-matched healthy controls (HCs) underwent magnetic resonance imaging examination. Imaging data were analyzed using two-sample t-tests to identify group differences in FA and MD values. Patients with comitant strabismus were distinguishable from HCs by receiver operating characteristic curves.

          Results

          Compared with HCs, patients with comitant strabismus exhibited significantly decreased FA values in the brain regions of the left superior temporal gyrus and increased values in the bilateral medial frontal gyrus, right globus pallidus/brainstem, and bilateral precuneus. Meanwhile, MD value was significantly reduced in the brain regions of the bilateral cerebellum posterior lobe and left middle frontal gyrus but increased in the brain regions of the right middle frontal gyrus and left anterior cingulate.

          Conclusion

          These results suggest significant brain abnormalities in comitant strabismus, which may underlie the pathologic mechanisms of fusion defects and ocular motility disorders in patients with comitant strabismus.

          Most cited references28

          • Record: found
          • Abstract: found
          • Article: not found

          Perceptual and motor processing stages identified in the activity of macaque frontal eye field neurons during visual search.

          1. The latency between the appearance of a popout search display and the eye movement to the oddball target of the display varies from trial to trial in both humans and monkeys. The source of the delay and variability of reaction time is unknown but has been attributed to as yet poorly defined decision processes. 2. We recorded neural activity in the frontal eye field (FEF), an area regarded as playing a central role in producing purposeful eye movements, of monkeys (Macaca mulatta) performing a popout visual search task. Eighty-four neurons with visually evoked activity were analyzed. Twelve of these neurons had a phasic response associated with the presentation of the visual stimulus. The remaining neurons had more tonic responses that persisted through the saccade. Many of the neurons with more tonic responses resembled visuomovement cells in that they had activity that increased before a saccade into their response field. 3. The visual response latencies of FEF neurons were determined with the use of a Poisson spike train analysis. The mean visual latency was 67 ms (minimum = 35 ms, maximum = 138 ms). The visual response latencies to the target presented alone, to the target presented with distractors, or to the distractors did not differ significantly. 4. The initial visual activation of FEF neurons does not discriminate the target from the distractors of a popout visual search stimulus array, but the activity evolves to a state that discriminates whether the target of the search display is within the receptive field. We tested the hypothesis that the source of variability of saccade latency is the time taken by neurons involved in saccade programming to select the target for the gaze shift. 5. With the use of an analysis adapted from signal detection theory, we determined when the activity of single FEF neurons can reliably indicate whether the target or distractors are present within their response fields. The time of target discrimination partitions the reaction time into a perceptual stage in which target discrimination takes place, and a motor stage in which saccade programming and generation take place. The time of target discrimination occurred most often between 120 and 150 ms after stimulus presentation. 6. We analyzed the time course of target discrimination in the activity of single cells after separating trials into short, medium, and long saccade latency groups. Saccade latency was not correlated with the duration of the perceptual stage but was correlated with the duration of the motor stage. This result is inconsistent with the hypothesis that the time taken for target discrimination, as indexed by FEF neurons, accounts for the wide variability in the time of movement initiation. 7. We conclude that the variability observed in saccade latencies during a simple visual search task is largely due to postperceptual motor processing following target discrimination. Signatures of both perceptual and postperceptual processing are evident in FEF. Procrastination in the output stage may prevent stereotypical behavior that would be maladaptive in a changing environment.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The cerebellum and language: historical perspective and review.

            Investigation of a possible role for the cerebellum in the mediation of cognitive processes, including language, has historically been overshadowed by research interest in cerebellar coordination of motor control. Over the past two decades, however, the question of a possible participation of the cerebellum in language processing itself has come to the forefront. In particular recent advances in our understanding of the neuroanatomy of the cerebellum combined with evidence from functional neuroimaging, neurophysiological and neuropsychological research, have extended our view of the cerebellum from that of a simple coordinator of autonomic and somatic motor function. Rather it is now more widely accepted that the cerebellum, and in particular the right cerebellar hemisphere, participates in modulation of cognitive functioning, especially to those parts of the brain to which it is reciprocally connected. The present paper reviews the neuroanatomical, clinical and functional neuroimaging evidence suggestive of a role for the cerebellum in language processing. The possible neuropathophysiological substrates of language impairment associated with cerebellar pathology are discussed and the nature of the linguistic deficits associated with disease or damage to the cerebellum described. Copyright (c) 2009 Elsevier Srl. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Neuroanatomy of adult strabismus: a voxel-based morphometric analysis of magnetic resonance structural scans.

              Cerebral deficit has been implicated in the genesis of strabismus and in the mechanisms adopted to compensate for the visual disorder. Voxel-based morphometry (VBM) was applied to magnetic resonance images of strabismic adults to detect any abnormal brain anatomy, which could not be easily identified by simple inspection. The gray matter volume in strabismic adults was smaller than that in normal subjects at the areas consistent with the occipital eye field (OEF) and parietal eye field (PEF). However, greater gray matter volume was found in strabismic adults relative to normal controls at the areas consistent with the frontal eye field (FEF), the supplementary eye field (SEF), the prefrontal cortex (PFC), and subcortical regions such as the thalamus and the basal ganglia. These opposite gray matter changes in the visual and the oculomotor processing areas are compatible with a hypothesis of plasticity in the oculomotor regions to compensate for the cortical deficits in the visual processing areas.
                Bookmark

                Author and article information

                Journal
                Neuropsychiatr Dis Treat
                Neuropsychiatr Dis Treat
                Neuropsychiatric Disease and Treatment
                Neuropsychiatric Disease and Treatment
                Dove Medical Press
                1176-6328
                1178-2021
                2016
                12 August 2016
                : 12
                : 2007-2014
                Affiliations
                [1 ]Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Nanchang
                [2 ]Department of Ophthalmology, The First People’s Hospital of Jiujiang City, Jiujiang
                [3 ]Department of Radiology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, People’s Republic of China
                Author notes
                Correspondence: Yi Shao, Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, No 17, YongWaiZheng Street, DongHu District, Nanchang 330006, Jiangxi, People’s Republic of China, Tel/fax +86 791 8869 2520, Email freebee99@ 123456163.com
                Fu-Qing Zhou, Department of Radiology, The First Affiliated Hospital of Nanchang University, No 17, YongWaiZheng Street, DongHu District, Nanchang 330006, Jiangxi, People’s Republic of China, Tel +86 791 8869 5132, Email fq.chou@ 123456yahoo.com
                [*]

                These authors contributed equally to this work

                Article
                ndt-12-2007
                10.2147/NDT.S108834
                4991538
                27574432
                2f33c3ff-09f0-4a60-a21d-283da7e19729
                © 2016 Huang et al. This work is published and licensed by Dove Medical Press Limited

                The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution – Non Commercial (unported, v3.0) License ( http://creativecommons.org/licenses/by-nc/3.0/). By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed.

                History
                Categories
                Original Research

                Neurology
                comitant strabismus,diffusion tensor imaging,mean diffusivity,fractional anisotropy,resting state

                Comments

                Comment on this article