138
views
1
recommends
+1 Recommend
0 collections
    1
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Genome-Wide Analysis of the World's Sheep Breeds Reveals High Levels of Historic Mixture and Strong Recent Selection

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Genomic structure in a global collection of domesticated sheep reveals a history of artificial selection for horn loss and traits relating to pigmentation, reproduction, and body size.

          Abstract

          Through their domestication and subsequent selection, sheep have been adapted to thrive in a diverse range of environments. To characterise the genetic consequence of both domestication and selection, we genotyped 49,034 SNP in 2,819 animals from a diverse collection of 74 sheep breeds. We find the majority of sheep populations contain high SNP diversity and have retained an effective population size much higher than most cattle or dog breeds, suggesting domestication occurred from a broad genetic base. Extensive haplotype sharing and generally low divergence time between breeds reveal frequent genetic exchange has occurred during the development of modern breeds. A scan of the genome for selection signals revealed 31 regions containing genes for coat pigmentation, skeletal morphology, body size, growth, and reproduction. We demonstrate the strongest selection signal has occurred in response to breeding for the absence of horns. The high density map of genetic variability provides an in-depth view of the genetic history for this important livestock species.

          Author Summary

          During the process of domestication, mankind recruited animals from the wild into a captive environment, changing their morphology, behaviour, and genetics. In the case of sheep, domestication and subsequent selection by their animal handlers over thousands of years has produced a spectrum of breeds specialised for the production of wool, milk, and meat. We sought to use this population history to search for the genes that directly underpin phenotypic variation. We collected DNA from 2,819 sheep, belonging to 74 breeds sampled from around the world, and assessed the genotype of each animal at nearly 50,000 locations across the genome. Our results show that sheep breeds have maintained high levels of genetic diversity, in contrast to other domestic animals such as dogs. We also show that particular regions of the genome contain strong evidence for accelerated change in response to artificial selection. The most prominent example was identified in response to breeding for the absence of horns, a trait now common across many modern breeds. Furthermore, we demonstrate that other genomic regions under selection in sheep contain genes controlling pigmentation, reproduction, and body size.

          Related collections

          Most cited references39

          • Record: found
          • Abstract: found
          • Article: not found

          The genetic structure and history of Africans and African Americans.

          Africa is the source of all modern humans, but characterization of genetic variation and of relationships among populations across the continent has been enigmatic. We studied 121 African populations, four African American populations, and 60 non-African populations for patterns of variation at 1327 nuclear microsatellite and insertion/deletion markers. We identified 14 ancestral population clusters in Africa that correlate with self-described ethnicity and shared cultural and/or linguistic properties. We observed high levels of mixed ancestry in most populations, reflecting historical migration events across the continent. Our data also provide evidence for shared ancestry among geographically diverse hunter-gatherer populations (Khoesan speakers and Pygmies). The ancestry of African Americans is predominantly from Niger-Kordofanian (approximately 71%), European (approximately 13%), and other African (approximately 8%) populations, although admixture levels varied considerably among individuals. This study helps tease apart the complex evolutionary history of Africans and African Americans, aiding both anthropological and genetic epidemiologic studies.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A mutation creating a potential illegitimate microRNA target site in the myostatin gene affects muscularity in sheep.

            Texel sheep are renowned for their exceptional meatiness. To identify the genes underlying this economically important feature, we performed a whole-genome scan in a Romanov x Texel F2 population. We mapped a quantitative trait locus with a major effect on muscle mass to chromosome 2 and subsequently fine-mapped it to a chromosome interval encompassing the myostatin (GDF8) gene. We herein demonstrate that the GDF8 allele of Texel sheep is characterized by a G to A transition in the 3' UTR that creates a target site for mir1 and mir206, microRNAs (miRNAs) that are highly expressed in skeletal muscle. This causes translational inhibition of the myostatin gene and hence contributes to the muscular hypertrophy of Texel sheep. Analysis of SNP databases for humans and mice demonstrates that mutations creating or destroying putative miRNA target sites are abundant and might be important effectors of phenotypic variation.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Genome-wide survey of SNP variation uncovers the genetic structure of cattle breeds.

              The imprints of domestication and breed development on the genomes of livestock likely differ from those of companion animals. A deep draft sequence assembly of shotgun reads from a single Hereford female and comparative sequences sampled from six additional breeds were used to develop probes to interrogate 37,470 single-nucleotide polymorphisms (SNPs) in 497 cattle from 19 geographically and biologically diverse breeds. These data show that cattle have undergone a rapid recent decrease in effective population size from a very large ancestral population, possibly due to bottlenecks associated with domestication, selection, and breed formation. Domestication and artificial selection appear to have left detectable signatures of selection within the cattle genome, yet the current levels of diversity within breeds are at least as great as exists within humans.
                Bookmark

                Author and article information

                Contributors
                Role: Academic Editor
                Journal
                PLoS Biol
                plos
                plosbiol
                PLoS Biology
                Public Library of Science (San Francisco, USA )
                1544-9173
                1545-7885
                February 2012
                February 2012
                7 February 2012
                : 10
                : 2
                : e1001258
                Affiliations
                [1 ]Livestock Industries, CSIRO, Brisbane, Australia
                [2 ]Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
                [3 ]Bioscience Research Division, Department of Primary Industries Victoria, Melbourne, Australia
                [4 ]Laboratoire de Genetique Cellulaire, INRA, Toulouse, France
                [5 ]Illumina Inc., San Diego, California, United States of America
                [6 ]Genetic Resources and Biotechnology, Embrapa, Brasília, Brazil
                [7 ]Department of General and Environmental Physiology, University of Bari, Bari, Italy
                [8 ]Faculty of Veterinary Science, University of Sydney, Camden, Australia
                [9 ]AgResearch, Invermay Agricultural Center, Mosgiel, New Zealand
                [10 ]www.sheephapmap.org
                The Wellcome Trust Sanger Institute, United Kingdom
                Author notes

                The author(s) have made the following declarations about their contributions: Conceived and designed the experiments: JWK HR JMcE BD. Performed the experiments: JWK RMcC VW KG. Analyzed the data: JWK JAL BH SB LPN MSC BS VW KG SP WB EC. Contributed reagents/materials/analysis tools: International Sheep Genomics Consortium. Wrote the paper: JWK JAL BH.

                ¶ Membership of the International Sheep Genomics Consortium is provided in the Acknowledgments.

                Article
                PBIOLOGY-D-11-02066
                10.1371/journal.pbio.1001258
                3274507
                22346734
                2f350995-ddd7-4bbf-ab7d-0edb7f3341d7
                Kijas et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 22 May 2011
                : 28 December 2011
                Page count
                Pages: 14
                Categories
                Research Article
                Biology
                Evolutionary Biology
                Evolutionary Processes
                Population Genetics
                Genetics
                Genomics
                Genome Analysis Tools

                Life sciences
                Life sciences

                Comments

                Comment on this article