104
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Cul3 and the BTB Adaptor Insomniac Are Key Regulators of Sleep Homeostasis and a Dopamine Arousal Pathway in Drosophila

      research-article
      , *
      PLoS Genetics
      Public Library of Science

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Sleep is homeostatically regulated, such that sleep drive reflects the duration of prior wakefulness. However, despite the discovery of genes important for sleep, a coherent molecular model for sleep homeostasis has yet to emerge. To better understand the function and regulation of sleep, we employed a reverse-genetics approach in Drosophila. An insertion in the BTB domain protein CG32810/insomniac ( inc) exhibited one of the strongest baseline sleep phenotypes thus far observed, a ∼10 h sleep reduction. Importantly, this is coupled to a reduced homeostatic response to sleep deprivation, consistent with a disrupted sleep homeostat. Knockdown of the INC-interacting protein, the E3 ubiquitin ligase Cul3, results in reduced sleep duration, consolidation, and homeostasis, suggesting an important role for protein turnover in mediating INC effects. Interestingly, inc and Cul3 expression in post-mitotic neurons during development contributes to their adult sleep functions. Similar to flies with increased dopaminergic signaling, loss of inc and Cul3 result in hyper-arousability to a mechanical stimulus in adult flies. Furthermore, the inc sleep duration phenotype can be rescued by pharmacological inhibition of tyrosine hydroxylase, the rate-limiting enzyme for dopamine biosynthesis. Taken together, these results establish inc and Cul3 as important new players in setting the sleep homeostat and a dopaminergic arousal pathway in Drosophila.

          Author Summary

          Sleep is an essential behavior that encompasses roughly a third of our lives; however, the underlying function remains a mystery. The fruit fly has emerged as an important model system for understanding sleep behavior, exhibiting several behavioral and genetic similarities with mammalian sleep, including consolidated immobility, an elevation of arousal threshold to a range of stimuli, homeostatic drive, and manipulation by proven stimulants and sedatives. We tested disruptions of candidate sleep genes and identified a gene called insomniac that exhibits one of the strongest and most robust sleep phenotypes to date, including a suppressed homeostatic response to sleep deprivation. We find similar phenotypes for a gene previously shown to interact with inc and a known regulator of protein degradation, Cul3, linking sleep homeostasis to protein turnover. Importantly, we find that insomniac functions in a known arousal system in the brain, as defined by the neurotransmitter dopamine. This work provides an important insight into the genetic basis of sleep homeostasis with the discovery of a new molecular component of a dopaminergic arousal pathway. Given the conservation of fly and mammalian systems, these studies may lead to new insights into the molecules that mediate sleep homeostasis and arousal in humans.

          Related collections

          Most cited references49

          • Record: found
          • Abstract: found
          • Article: not found

          The DrosDel collection: a set of P-element insertions for generating custom chromosomal aberrations in Drosophila melanogaster.

          We describe a collection of P-element insertions that have considerable utility for generating custom chromosomal aberrations in Drosophila melanogaster. We have mobilized a pair of engineered P elements, p[RS3] and p[RS5], to collect 3243 lines unambiguously mapped to the Drosophila genome sequence. The collection contains, on average, an element every 35 kb. We demonstrate the utility of the collection for generating custom chromosomal deletions that have their end points mapped, with base-pair resolution, to the genome sequence. The collection was generated in an isogenic strain, thus affording a uniform background for screens where sensitivity to genetic background is high. The entire collection, along with a computational and genetic toolbox for designing and generating custom deletions, is publicly available. Using the collection it is theoretically possible to generate >12,000 deletions between 1 bp and 1 Mb in size by simple eye color selection. In addition, a further 37,000 deletions, selectable by molecular screening, may be generated. We are now using the collection to generate a second-generation deficiency kit that is precisely mapped to the genome sequence.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Sleep in Drosophila is regulated by adult mushroom bodies.

            Sleep is one of the few major whole-organ phenomena for which no function and no underlying mechanism have been conclusively demonstrated. Sleep could result from global changes in the brain during wakefulness or it could be regulated by specific loci that recruit the rest of the brain into the electrical and metabolic states characteristic of sleep. Here we address this issue by exploiting the genetic tractability of the fruitfly, Drosophila melanogaster, which exhibits the hallmarks of vertebrate sleep. We show that large changes in sleep are achieved by spatial and temporal enhancement of cyclic-AMP-dependent protein kinase (PKA) activity specifically in the adult mushroom bodies of Drosophila. Other manipulations of the mushroom bodies, such as electrical silencing, increasing excitation or ablation, also alter sleep. These results link sleep regulation to an anatomical locus known to be involved in learning and memory.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Inducing sleep by remote control facilitates memory consolidation in Drosophila.

              Sleep is believed to play an important role in memory consolidation. We induced sleep on demand by expressing the temperature-gated nonspecific cation channel Transient receptor potential cation channel (UAS-TrpA1) in neurons, including those with projections to the dorsal fan-shaped body (FB). When the temperature was raised to 31°C, flies entered a quiescent state that meets the criteria for identifying sleep. When sleep was induced for 4 hours after a massed-training protocol for courtship conditioning that is not capable of inducing long-term memory (LTM) by itself, flies develop an LTM. Activating the dorsal FB in the absence of sleep did not result in the formation of LTM after massed training.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Genet
                PLoS Genet
                plos
                plosgen
                PLoS Genetics
                Public Library of Science (San Francisco, USA )
                1553-7390
                1553-7404
                October 2012
                October 2012
                4 October 2012
                : 8
                : 10
                : e1003003
                Affiliations
                [1]Department of Neurobiology, Northwestern University, Evanston, Illinois, United States of America
                University of Pennsylvania, United States of America
                Author notes

                The authors have declared that no competing interests exist.

                Conceived and designed the experiments: CP RA. Performed the experiments: CP. Analyzed the data: CP RA. Contributed reagents/materials/analysis tools: CP. Wrote the paper: CP RA.

                Article
                PGENETICS-D-12-00337
                10.1371/journal.pgen.1003003
                3464197
                23055946
                2f4adf69-196a-4466-9898-73b7754ec4f6
                Copyright @ 2012

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 7 February 2012
                : 15 August 2012
                Page count
                Pages: 15
                Funding
                This work was supported by NRSA 1F32NS062556 to CP and by NIH R01MH092273 and R01NS059042 to RA. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Biology
                Genetics
                Animal Genetics
                Genetic Screens
                Model Organisms
                Animal Models
                Drosophila Melanogaster
                Neuroscience
                Behavioral Neuroscience
                Neurotransmitters

                Genetics
                Genetics

                Comments

                Comment on this article