The high luminous efficiency and superior uniformity of angular-dependent correlated color temperature (CCT) white light-emitting diodes have been investigated by ZrO₂ nano-particles in a remote phosphor structure. By adding ZrO₂ nano-particles with silicone onto the surface of the phosphor layer, the capability of light scattering could be enhanced. In particular, the intensity of blue light at large angles was increased and the CCT deviations could be reduced. Besides, the luminous flux was improved due to the ZrO₂ nano-particles with silicone providing a suitable refractive index between air and phosphor layers. This novel structure reduces angular-dependent CCT deviations from 1000 to 420 K in the range of -70° to 70°. Moreover, the enhancement of lumen flux was increased by 2.25% at a driving current 120 mA, compared to a conventional remote phosphor structure without ZrO₂ nano-particles. Consequently, the ZrO₂ nano-particles in a remote phosphor structure could not only improve the uniformity of lighting but also increase the light output.