1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Distinct functional and structural neural underpinnings of working memory

      , , ,
      NeuroImage
      Elsevier BV

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          <p id="P3">Working memory (WM), the short-term abstraction and manipulation of information, is an essential neurocognitive process in daily functioning. Few studies have concurrently examined the functional and structural neural correlates of WM and the current study did so to characterize both overlapping and unique associations. Participants were a large sample of adults from the Human Connectome Project ( <i>N</i>=1064; 54% female) who completed an in-scanner visual N-back WM task. The results indicate a clear dissociation between BOLD activation during the WM task and brain structure in relation to performance. In particular, while activation in the middle frontal gyrus was positively associated with WM performance, cortical thickness in this region was inversely associated with performance. Additional unique associations with WM were BOLD activation in superior parietal lobule, cingulate, and fusiform gyrus and gray matter volume in the orbitofrontal cortex and cuneus. Across findings, substantially larger effects were observed for functional associations relative to structural associations. These results provide further evidence implicating frontoparietal subunits of the brain in WM. Moreover, these findings reveal the distinct, and in some cases opposing, roles of brain structure and neural activation in WM, highlighting the lack of homology between structure and function in relation to cognition. </p>

          Related collections

          Author and article information

          Journal
          NeuroImage
          NeuroImage
          Elsevier BV
          10538119
          July 2018
          July 2018
          : 174
          : 463-471
          Article
          10.1016/j.neuroimage.2018.03.022
          6908808
          29551458
          2f6cbec9-1d72-488f-be93-94ce79da0f47
          © 2018

          https://www.elsevier.com/tdm/userlicense/1.0/

          History

          Comments

          Comment on this article