This paper is devoted to the study of second order optimality conditions for strong local minimizers in the frameworks of unconstrained and constrained optimization problems in finite dimensions via subgradient graphical derivative. We prove that the positive definiteness of the subgradient graphical derivative of an extended-real-valued lower semicontinuous proper function at a proximal stationary point is sufficient for the quadratic growth condition. It is also a necessary condition for the latter property when the function is either subdifferentially continuous, prox-regular, twice epi-differentiable or variationally convex. By applying our results to the \(\mathcal{C}^2\)-cone reducible constrained programs, we establish no-gap second order optimality conditions for (strong) local minimizers under the metric subregularity constraint qualification. These results extend the classical second order optimality conditions by surpassing the well-known Robinson's constraint qualification. Our approach also highlights the interconnection between the strong metric subregularity of subdifferential and quadratic growth condition in optimization problems.