11
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Ultrasound with microbubbles improves memory, ameliorates pathology and modulates hippocampal proteomic changes in a triple transgenic mouse model of Alzheimer's disease

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Alzheimer's disease (AD) is a progressive neurodegenerative disease manifested by cognitive impairment. As a unique approach to open the blood-brain barrier (BBB) noninvasively and temporarily, a growing number of studies showed that low-intensity focused ultrasound in combination with microbubbles (FUS/MB), in the absence of therapeutic agents, is capable of ameliorating amyloid or tau pathology, concurrent with improving memory deficits of AD animal models. However, the effects of FUS/MB on both the two pathologies simultaneously, as well as the memory behaviors, have not been reported so far.

          Methods: In this study, female triple transgenic AD (3×Tg-AD) mice at eight months of age with both amyloid-β (Aβ) deposits and tau phosphorylation were treated by repeated FUS/MB in the unilateral hippocampus twice per week for six weeks. The memory behaviors were investigated by the Y maze, the Morris water maze and the step-down passive avoidance test following repeated FUS/MB treatments. Afterwards, the involvement of Aβ and tau pathology were assessed by immunohistochemical analysis. Neuronal health and phagocytosis of Aβ deposits by microglia in the hippocampus were examined by confocal microscopy. Further, hippocampal proteomic alterations were analyzed by employing two-dimensional fluorescence difference gel electrophoresis (2D-DIGE) combined with mass spectrometry.

          Results: The three independent memory tasks were indicative of evident learning and memory impairments in eight-month-old 3×Tg-AD mice, which developed intraneuronal Aβ, extracellular diffuse Aβ deposits and phosphorylated tau in the hippocampus and amygdala. Following repeated FUS/MB treatments, significant improvement in learning and memory ability of the 3×Tg-AD mice was achieved. Amelioration in both Aβ deposits and phosphorylated tau in the sonicated hemisphere was induced in FUS/MB-treated 3×Tg-AD mice. Albeit without increase in neuron density, enhancement in axonal neurofilaments emerged from the FUS/MB treatment. Confocal microscopy revealed activated microglia engulfing Aβ deposits in the FUS/MB-treated hippocampus. Further, proteomic analysis revealed 20 differentially expressed proteins, associated with glycolysis, neuron projection, mitochondrial pathways, metabolic process and ubiquitin binding etc., in the hippocampus between FUS/MB-treated and sham-treated 3×Tg-AD mice.

          Conclusions: Our findings reinforce the positive therapeutic effects on AD models with both Aβ and tau pathology induced by FUS/MB-mediated BBB opening, further supporting the potential of this treatment regime for clinical applications.

          Related collections

          Most cited references55

          • Record: found
          • Abstract: found
          • Article: not found

          Pericyte loss leads to circulatory failure and pleiotrophin depletion causing neuron loss

          Pericytes are positioned between brain capillary endothelial cells, astrocytes and neurons. They degenerate in multiple neurological disorders. However, their role in the pathogenesis of these disorders remains debatable. Here, we generated an inducible pericyte-specific Cre line and crossed pericyte-specific Cre mice with iDTR mice carrying Cre-dependent human diphtheria toxin receptor (DTR). After pericyte ablation with diphtheria toxin, mice developed an acute blood-brain barrier (BBB) breakdown, severe loss of blood flow, and a rapid neuron loss associated with loss of pericyte-derived pleiotrophin (PTN), a neurotrophic growth factor. Intracerebroventricular PTN infusions prevented neuron loss in pericyte-ablated mice despite persistent circulatory changes. Silencing pericyte-derived Ptn rendered neurons vulnerable to ischemic and excitotoxic injury. Our data demonstrate a rapid neurodegeneration cascade linking pericyte loss to acute circulatory collapse and loss of PTN neurotrophic support. These findings could have implications for the pathogenesis and treatment of neurological disorders associated with pericyte loss and/or neurovascular dysfunction.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Pericyte degeneration causes white matter dysfunction in the mouse central nervous system

            Diffuse white matter disease associated with small vessel disease and dementia is prevalent in the elderly. The biological mechanisms, however, remain elusive. Using pericyte-deficient mice, magnetic resonance imaging, viral-based tract-tracing, behavior and tissue analysis, here we show that pericyte degeneration disrupts white matter microcirculation causing accumulation of toxic blood-derived fibrin(ogen) deposits and blood flow reductions, which triggers loss of myelin, axons and oligodendrocytes. This disrupts brain circuits leading to white matter functional deficits before neuronal loss occurs. Fibrinogen and fibrin fibrils initiated autophagy-dependent cell death in oligodendrocyte and pericyte cultures, whereas pharmacological and genetic manipulations of systemic fibrinogen levels in pericyte-deficient, but not control mice, influenced the degree of white matter fibrin(ogen) deposition, pericyte degeneration, vascular pathology and white matter changes. Thus, pericytes control white matter structure and function, which has implications for the pathogenesis and treatment of human white matter disease associated with small vessel disease.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Temporal and regional progression of Alzheimer’s disease‐like pathology in 3xTg‐AD mice

              Abstract Accumulation of amyloid‐β (Aβ) and fibrillary tangles, as well as neuroinflammation and memory loss, are hallmarks of Alzheimer’s disease (AD). After almost 15 years from their generation, 3xTg‐AD mice are still one of the most used transgenic models of AD. Converging evidence indicates that the phenotype of 3xTg‐AD mice has shifted over the years and contradicting reports about onset of pathology or cognitive deficits are apparent in the literature. Here, we assessed Aβ and tau load, neuroinflammation, and cognitive changes in 2‐, 6‐, 12‐, and 20‐month‐old female 3xTg‐AD and nontransgenic (NonTg) mice. We found that ~80% of the mice analyzed had Aβ plaques in the caudal hippocampus at 6 months of age, while 100% of them had Aβ plaques in the hippocampus at 12 months of age. Cortical Aβ plaques were first detected at 12 months of age, including in the entorhinal cortex. Phosphorylated Tau at Ser202/Thr205 and Ser422 was apparent in the hippocampus of 100% of 6‐month‐old mice, while only 50% of mice showed tau phosphorylation at Thr212/Ser214 at this age. Neuroinflammation was first evident in 6‐month‐old mice and increased as a function of age. These neuropathological changes were clearly associated with progressive cognitive decline, which was first apparent at 6 months of age and became significantly worse as the mice aged. These data indicate a consistent and predictable progression of the AD‐like pathology in female 3xTg‐AD mice, and will facilitate the design of future studies using these mice.
                Bookmark

                Author and article information

                Journal
                Theranostics
                Theranostics
                thno
                Theranostics
                Ivyspring International Publisher (Sydney )
                1838-7640
                2020
                26 September 2020
                : 10
                : 25
                : 11794-11819
                Affiliations
                [1 ]National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, 518060, China.
                [2 ]Key Laboratory of Modern Toxicology of Shenzhen, Shenzhen Medical Key Discipline of Health Toxicology (2020-2024), Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China.
                [3 ]Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, 30013 Taiwan.
                [4 ]College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China.
                [5 ]Institute of New Drug Research and Guangzhou Key Laboratory of Innovative Chemical Drug Research in Cardio-cerebrovascular Diseases, College of Pharmacy, Jinan University Guangzhou, 510632, China.
                [6 ]Department of Pathophysiology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Key Laboratory of Ministry of Education of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
                [7 ]State Key Laboratory of Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China.
                Author notes
                ✉ Corresponding authors: Xin Chen & Xifei Yang; Dr. Xifei Yang, Key Laboratory of Modern Toxicology of Shenzhen, Shenzhen Center for Disease Control and Prevention, No. 8, Longyuan Road, Nanshan District, Shenzhen, 518055, People's Republic of China. Tel: +86 75525601914, Fax: +86 755 25508584, E-mail: xifeiyang@ 123456gmail.com ; Dr. Xin Chen, School of Biomedical Engineering, Xili Campus of Shenzhen University, 1066 Xueyuan Avenue, Nanshan District, Shenzhen, 518071, People's Republic of China. Tel: +86 755 86671921, Fax: +86 755 26910441, E-mail: chenxin@ 123456szu.edu.cn .

                Competing Interests: The authors have declared that no competing interest exists.

                Article
                thnov10p11794
                10.7150/thno.44152
                7546002
                33052247
                2f88a238-d360-4ac6-a920-44b98ba54197
                © The author(s)

                This is an open access article distributed under the terms of the Creative Commons Attribution License ( https://creativecommons.org/licenses/by/4.0/). See http://ivyspring.com/terms for full terms and conditions.

                History
                : 20 January 2020
                : 16 September 2020
                Categories
                Research Paper

                Molecular medicine
                triple transgenic mouse model of alzheimer's disease,blood-brain barrier,focused ultrasound,microbubbles,behavioral tests

                Comments

                Comment on this article