Blog
About

  • Record: found
  • Abstract: found
  • Article: found
Is Open Access

Long-term noise exposure and the risk for type 2 diabetes: A meta-analysis

Read this article at

Bookmark
      There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

      Abstract

      Diabetes mellitus is one of the leading causes for disability and mortality in modern societies. Apart from personal factors its incidence might be influenced by environmental risks such as air pollution and noise. This paper reports a systematic review and meta-analysis on the risk for type 2 diabetes due to long-term noise exposure. Electronic searches in MEDLINE, EMBASE and the Internet yielded 9 relevant studies (5 for residential and 4 for occupational exposure). They were checked against a predefined list of safeguards against bias producing individual quality scores, which were then fed to MetaXL to conduct a quality effects meta-analysis. People exposed at their homes to roughly Lden > 60 dB had 22% higher risk (95% confidence interval [CI]: 1.09-1.37) for type 2 diabetes in comparison to those exposed to Lden < 64 dB; when studies reporting contentious exposure categories were excluded, there was still 19% risk (95% CI: 1.05-1.35) for Lden = 60-70 dB versus Lden < 60 dB. In occupational environment there was not significant risk (relative risk [RR] = 0.91, 95% CI: 0.78-1.06) for < 85 dB versus >85 dB. There was no heterogeneity in the two groups (I2 = 0.00). The results should be interpreted with caution due to methodological discrepancies across the studies; however, they are indicative of the close links that noise pollution might have not only to cardiovascular diseases but to endocrine dysfunction as well.

      Related collections

      Most cited references 48

      • Record: found
      • Abstract: not found
      • Article: not found

      Measuring inconsistency in meta-analyses.

        Bookmark
        • Record: found
        • Abstract: found
        • Article: not found

        Quantifying heterogeneity in a meta-analysis.

        The extent of heterogeneity in a meta-analysis partly determines the difficulty in drawing overall conclusions. This extent may be measured by estimating a between-study variance, but interpretation is then specific to a particular treatment effect metric. A test for the existence of heterogeneity exists, but depends on the number of studies in the meta-analysis. We develop measures of the impact of heterogeneity on a meta-analysis, from mathematical criteria, that are independent of the number of studies and the treatment effect metric. We derive and propose three suitable statistics: H is the square root of the chi2 heterogeneity statistic divided by its degrees of freedom; R is the ratio of the standard error of the underlying mean from a random effects meta-analysis to the standard error of a fixed effect meta-analytic estimate, and I2 is a transformation of (H) that describes the proportion of total variation in study estimates that is due to heterogeneity. We discuss interpretation, interval estimates and other properties of these measures and examine them in five example data sets showing different amounts of heterogeneity. We conclude that H and I2, which can usually be calculated for published meta-analyses, are particularly useful summaries of the impact of heterogeneity. One or both should be presented in published meta-analyses in preference to the test for heterogeneity. Copyright 2002 John Wiley & Sons, Ltd.
          Bookmark
          • Record: found
          • Abstract: found
          • Article: not found

          National, regional, and global trends in fasting plasma glucose and diabetes prevalence since 1980: systematic analysis of health examination surveys and epidemiological studies with 370 country-years and 2·7 million participants.

          Data for trends in glycaemia and diabetes prevalence are needed to understand the effects of diet and lifestyle within populations, assess the performance of interventions, and plan health services. No consistent and comparable global analysis of trends has been done. We estimated trends and their uncertainties in mean fasting plasma glucose (FPG) and diabetes prevalence for adults aged 25 years and older in 199 countries and territories. We obtained data from health examination surveys and epidemiological studies (370 country-years and 2·7 million participants). We converted systematically between different glycaemic metrics. For each sex, we used a Bayesian hierarchical model to estimate mean FPG and its uncertainty by age, country, and year, accounting for whether a study was nationally, subnationally, or community representative. In 2008, global age-standardised mean FPG was 5·50 mmol/L (95% uncertainty interval 5·37-5·63) for men and 5·42 mmol/L (5·29-5·54) for women, having risen by 0·07 mmol/L and 0·09 mmol/L per decade, respectively. Age-standardised adult diabetes prevalence was 9·8% (8·6-11·2) in men and 9·2% (8·0-10·5) in women in 2008, up from 8·3% (6·5-10·4) and 7·5% (5·8-9·6) in 1980. The number of people with diabetes increased from 153 (127-182) million in 1980, to 347 (314-382) million in 2008. We recorded almost no change in mean FPG in east and southeast Asia and central and eastern Europe. Oceania had the largest rise, and the highest mean FPG (6·09 mmol/L, 5·73-6·49 for men; 6·08 mmol/L, 5·72-6·46 for women) and diabetes prevalence (15·5%, 11·6-20·1 for men; and 15·9%, 12·1-20·5 for women) in 2008. Mean FPG and diabetes prevalence in 2008 were also high in south Asia, Latin America and the Caribbean, and central Asia, north Africa, and the Middle East. Mean FPG in 2008 was lowest in sub-Saharan Africa, east and southeast Asia, and high-income Asia-Pacific. In high-income subregions, western Europe had the smallest rise, 0·07 mmol/L per decade for men and 0·03 mmol/L per decade for women; North America had the largest rise, 0·18 mmol/L per decade for men and 0·14 mmol/L per decade for women. Glycaemia and diabetes are rising globally, driven both by population growth and ageing and by increasing age-specific prevalences. Effective preventive interventions are needed, and health systems should prepare to detect and manage diabetes and its sequelae. Bill & Melinda Gates Foundation and WHO. Copyright © 2011 Elsevier Ltd. All rights reserved.
            Bookmark

            Author and article information

            Affiliations
            Faculty of Medicine, Medical University of Plovdiv, Plovdiv, Bulgaria
            Author notes
            Address for correspondence: Dr. Angel Mario Dzhambov, Faculty of Medicine, Medical University of Plovdiv, No. 15-A Vasil Aprilov Blvd., 4002 Plovdiv, Bulgaria. E-mail: angelleloti@ 123456gmail.com
            Journal
            Noise Health
            Noise Health
            NH
            Noise & Health
            Medknow Publications & Media Pvt Ltd (India )
            1463-1741
            1998-4030
            Jan-Feb 2015
            : 17
            : 74
            : 23-33
            25599755
            4918642
            NH-17-23
            10.4103/1463-1741.149571
            Copyright: © 2015 Noise & Health

            This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 License, which allows others to remix, tweak, and build upon the work non-commercially, as long as the author is credited and the new creations are licensed under the identical terms.

            Categories
            Original Article

            Comments

            Comment on this article