45
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found

      Update on Alzheimer's Disease Therapy and Prevention Strategies

      1 , 1 , 1 , 2
      Annual Review of Medicine
      Annual Reviews

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Alzheimer's disease (AD) is the primary cause of age-related dementia. Effective strategies to prevent and treat AD remain elusive despite major efforts to understand its basic biology and clinical pathophysiology. Significant investments in therapeutic drug discovery programs over the past two decades have yielded some important insights but no blockbuster drugs to alter the course of disease. Because significant memory loss and cognitive decline are associated with neuron death and loss of gray matter, especially in the frontal cortex and hippocampus, some focus in drug development has shifted to early prevention of cellular pathology. Although clinical trial design is challenging, due in part to a lack of robust biomarkers with predictive value, some optimism has come from the identification and study of inherited forms of early-onset AD and genetic risk factors that provide insights about molecular pathophysiology and potential drug targets. In addition, better understanding of the Aβ amyloid pathway and the tau pathway—leading to amyloid plaques and neurofibrillary tangles, respectively, which are histopathological hallmarks of AD—continues to drive significant drug research and development programs. The main focus of this review is to summarize the most recent basic biology, biochemistry, and pharmacology that serve as a foundation for more than 50 active advanced-phase clinical trials for AD prevention and therapy.

          Related collections

          Most cited references53

          • Record: found
          • Abstract: found
          • Article: not found

          The canonical Notch signaling pathway: unfolding the activation mechanism.

          Notch signaling regulates many aspects of metazoan development and tissue renewal. Accordingly, the misregulation or loss of Notch signaling underlies a wide range of human disorders, from developmental syndromes to adult-onset diseases and cancer. Notch signaling is remarkably robust in most tissues even though each Notch molecule is irreversibly activated by proteolysis and signals only once without amplification by secondary messenger cascades. In this Review, we highlight recent studies in Notch signaling that reveal new molecular details about the regulation of ligand-mediated receptor activation, receptor proteolysis, and target selection.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Immunization with amyloid-beta attenuates Alzheimer-disease-like pathology in the PDAPP mouse.

            Amyloid-beta peptide (Abeta) seems to have a central role in the neuropathology of Alzheimer's disease (AD). Familial forms of the disease have been linked to mutations in the amyloid precursor protein (APP) and the presenilin genes. Disease-linked mutations in these genes result in increased production of the 42-amino-acid form of the peptide (Abeta42), which is the predominant form found in the amyloid plaques of Alzheimer's disease. The PDAPP transgenic mouse, which overexpresses mutant human APP (in which the amino acid at position 717 is phenylalanine instead of the normal valine), progressively develops many of the neuropathological hallmarks of Alzheimer's disease in an age- and brain-region-dependent manner. In the present study, transgenic animals were immunized with Abeta42, either before the onset of AD-type neuropathologies (at 6 weeks of age) or at an older age (11 months), when amyloid-beta deposition and several of the subsequent neuropathological changes were well established. We report that immunization of the young animals essentially prevented the development of beta-amyloid-plaque formation, neuritic dystrophy and astrogliosis. Treatment of the older animals also markedly reduced the extent and progression of these AD-like neuropathologies. Our results raise the possibility that immunization with amyloid-beta may be effective in preventing and treating Alzheimer's disease.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Dystrophic microglia in the aging human brain.

              We have studied microglial morphology in the human cerebral cortex of two nondemented subjects using high-resolution LN-3 immunohistochemistry. Several abnormalities in microglial cytoplasmic structure, including deramification, spheroid formation, gnarling, and fragmentation of processes, were identified. These changes were determined to be different from the morphological changes that occur during microglial activation and they were designated collectively as microglial dystrophy. Quantitative evaluation of dystrophic changes in microglia revealed that these were much more prevalent in the older subject (68-year-old) than in the younger one (38-year-old). Thus, we conclude that microglial dystrophy is a sign of microglial cell senescence. We hypothesize that microglial senescence could be important for understanding age-related declines in cognitive function. Copyright 2003 Wiley-Liss, Inc.
                Bookmark

                Author and article information

                Journal
                Annual Review of Medicine
                Annu. Rev. Med.
                Annual Reviews
                0066-4219
                1545-326X
                January 14 2017
                January 14 2017
                : 68
                : 1
                : 413-430
                Affiliations
                [1 ]Laboratory of Chemical Biology and Signal Transduction, The Rockefeller University, New York, NY 10065; email:
                [2 ]Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Division of Neurogeriatrics, Karolinska Institutet, 141 57 Huddinge, Sweden
                Article
                10.1146/annurev-med-042915-103753
                28099083
                2fb2f30b-d794-4d5e-a70c-646e136c0ffa
                © 2017
                History

                Neurology,Health & Social care,Clinical Psychology & Psychiatry,Public health
                Neurology, Health & Social care, Clinical Psychology & Psychiatry, Public health

                Comments

                Comment on this article