20
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Epiretinal membrane: optical coherence tomography-based diagnosis and classification

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Epiretinal membrane (ERM) is a disorder of the vitreomacular interface characterized by symptoms of decreased visual acuity and metamorphopsia. The diagnosis and classification of ERM has traditionally been based on clinical examination findings. However, modern optical coherence tomography (OCT) has proven to be more sensitive than clinical examination for the diagnosis of ERM. Furthermore, OCT-derived findings, such as central foveal thickness and inner segment ellipsoid band integrity, have shown clinical relevance in the setting of ERM. To date, no OCT-based ERM classification scheme has been widely accepted for use in clinical practice and investigation. Herein, we review the pathogenesis, diagnosis, and classification of ERMs and propose an OCT-based ERM classification system.

          Related collections

          Most cited references82

          • Record: found
          • Abstract: found
          • Article: not found

          The International Vitreomacular Traction Study Group classification of vitreomacular adhesion, traction, and macular hole.

          The International Vitreomacular Traction Study (IVTS) Group was convened to develop an optical coherence tomography (OCT)-based anatomic classification system for diseases of the vitreomacular interface (VMI).
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Anatomical correlates to the bands seen in the outer retina by optical coherence tomography: literature review and model.

            To evaluate the validity of commonly used anatomical designations for the four hyperreflective outer retinal bands seen in current-generation optical coherence tomography, a scale model of outer retinal morphology was created using published information for direct comparison with optical coherence tomography scans. Articles and books concerning histology of the outer retina from 1900 until 2009 were evaluated, and data were used to create a scale model drawing. Boundaries between outer retinal tissue compartments described by the model were compared with intensity variations of representative spectral-domain optical coherence tomography scans using longitudinal reflectance profiles to determine the region of origin of the hyperreflective outer retinal bands. This analysis showed a high likelihood that the spectral-domain optical coherence tomography bands attributed to the external limiting membrane (the first, innermost band) and to the retinal pigment epithelium (the fourth, outermost band) are correctly attributed. Comparative analysis showed that the second band, often attributed to the boundary between inner and outer segments of the photoreceptors, actually aligns with the ellipsoid portion of the inner segments. The third band corresponded to an ensheathment of the cone outer segments by apical processes of the retinal pigment epithelium in a structure known as the contact cylinder. Anatomical attributions and subsequent pathophysiologic assessments pertaining to the second and third outer retinal hyperreflective bands may not be correct. This analysis has identified testable hypotheses for the actual correlates of the second and third bands. Nonretinal pigment epithelium contributions to the fourth band (e.g., Bruch membrane) remain to be determined.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Ultrahigh-resolution ophthalmic optical coherence tomography.

                Bookmark

                Author and article information

                Journal
                Clin Ophthalmol
                Clin Ophthalmol
                Clinical Ophthalmology
                Clinical Ophthalmology (Auckland, N.Z.)
                Dove Medical Press
                1177-5467
                1177-5483
                2016
                29 March 2016
                : 10
                : 527-534
                Affiliations
                Department of Ophthalmology, University of Arizona Medical Center, Tucson, AZ, USA
                Author notes
                Correspondence: William Stevenson, Department of Ophthalmology, University of Arizona Medical Center, 655 North Alvernon Way, Suite 108, Tucson, AZ 85711, USA, Tel +1 520 321 3677, Email wstevenson.md@ 123456gmail.com
                Article
                opth-10-527
                10.2147/OPTH.S97722
                4820189
                27099458
                2fb874ff-b297-4b26-b01a-5750f675a09f
                © 2016 Stevenson et al. This work is published and licensed by Dove Medical Press Limited

                The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution – Non Commercial (unported, v3.0) License ( http://creativecommons.org/licenses/by-nc/3.0/). By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed.

                History
                Categories
                Review

                Ophthalmology & Optometry
                macular pucker,cellophane macular reflex,preretinal macular fibrosis,optical coherence tomography,central foveal thickness,inner segment ellipsoid band

                Comments

                Comment on this article