Blog
About

10
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Inverse problems in spacetime I: Inverse problems for Einstein equations - Extended preprint version

      Preprint

      , ,

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          We consider inverse problems for the coupled Einstein equations and the matter field equations on a 4-dimensional globally hyperbolic Lorentzian manifold \((M,g)\). We give a positive answer to the question: Do the active measurements, done in a neighborhood \(U\subset M\) of a freely falling observed \(\mu=\mu([s_-,s_+])\), determine the conformal structure of the spacetime in the minimal causal diamond-type set \(V_g=J_g^+(\mu(s_-))\cap J_g^-(\mu(s_+))\subset M\) containing \(\mu\)? More precisely, we consider the Einstein equations coupled with the scalar field equations and study the system \(Ein(g)=T\), \(T=T(g,\phi)+F_1\), and \(\square_g\phi-\mathcal V^\prime(\phi)=F_2\), where the sources \(F=(F_1,F_2)\) correspond to perturbations of the physical fields which we control. The sources \(F\) need to be such that the fields \((g,\phi,F)\) are solutions of this system and satisfy the conservation law \(\nabla_jT^{jk}=0\). Let \((\hat g,\hat \phi)\) be the background fields corresponding to the vanishing source \(F\). We prove that the observation of the solutions \((g,\phi)\) in the set \(U\) corresponding to sufficiently small sources \(F\) supported in \(U\) determine \(V_{\hat g}\) as a differentiable manifold and the conformal structure of the metric \(\hat g\) in the domain \(V_{\hat g}\). The methods developed here have potential to be applied to a large class of inverse problems for non-linear hyperbolic equations encountered e.g. in various practical imaging problems.

          Related collections

          Author and article information

          Journal
          2014-05-18
          Article
          1405.4503

          http://arxiv.org/licenses/nonexclusive-distrib/1.0/

          Custom metadata
          35J25, 83C05, 53C50
          This is an extended preprint version of the paper Inverse problems in spacetime I: Inverse problems for Einstein equations. The supplementary video can be downloaded at the page http://www.rni.helsinki.fi/~mjl/publications_time.html. arXiv admin note: text overlap with arXiv:1405.3384, arXiv:1405.3386
          math.AP

          Analysis

          Comments

          Comment on this article