20
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Abnormal T-Cell Development in the Thymus of Non-obese Diabetic Mice: Possible Relationship With the Pathogenesis of Type 1 Autoimmune Diabetes

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Type 1 diabetes (T1D) is an autoimmune disease caused by the destruction of insulin-producing cells in the pancreas, by direct interactions with autoreactive pancreas infiltrating T lymphocytes (PILs). One of the most important animal models for this disease is the non-obese diabetic (NOD) mouse. Alterations in the NOD mouse thymus during the pathogenesis of the disease have been reported. From the initial migratory disturbances to the accumulation of mature thymocytes, including regulatory Foxp3 + T cells, important mechanisms seem to regulate the repertoire of T cells that leave the thymus to settle in peripheral lymphoid organs. A significant modulation of the expression of extracellular matrix and soluble chemoattractant molecules, in addition to integrins and chemokine receptors, may contribute to the progressive accumulation of mature thymocytes and consequent formation of giant perivascular spaces (PVS) that are observed in the NOD mouse thymus. Comparative large-scale transcriptional expression and network analyses involving mRNAs and miRNAs of thymocytes, peripheral T CD3 + cells and PILs provided evidence that in PILs chemokine receptors and mRNAs are post-transcriptionally regulated by miR-202-3p resulting in decreased activity of these molecules during the onset of T1D in NOD mice. In this review, we discuss the abnormal T-cell development in NOD mice in the context of intrathymic expression of different migration-related molecules, peptides belonging to the family of insulin and insulin-like growth factors as well as the participation of miRNAs as post-transcriptional regulators and their possible influence on the onset of aggressive autoimmunity during the pathogenesis of T1D.

          Related collections

          Most cited references87

          • Record: found
          • Abstract: found
          • Article: not found

          Projection of an immunological self shadow within the thymus by the aire protein.

          Humans expressing a defective form of the transcription factor AIRE (autoimmune regulator) develop multiorgan autoimmune disease. We used aire- deficient mice to test the hypothesis that this transcription factor regulates autoimmunity by promoting the ectopic expression of peripheral tissue- restricted antigens in medullary epithelial cells of the thymus. This hypothesis proved correct. The mutant animals exhibited a defined profile of autoimmune diseases that depended on the absence of aire in stromal cells of the thymus. Aire-deficient thymic medullary epithelial cells showed a specific reduction in ectopic transcription of genes encoding peripheral antigens. These findings highlight the importance of thymically imposed "central" tolerance in controlling autoimmunity.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Role of insulin-like growth factors in embryonic and postnatal growth.

            A developmental analysis of growth kinetics in mouse embryos carrying null mutations of the genes encoding insulin-like growth factor I (IGF-I), IGF-II, and the type 1 IGF receptor (IGF1R), alone or in combination, defined the onset of mutational effects leading to growth deficiency and indicated that between embryonic days 11.0 and 12.5, IGF1R serves only the in vivo mitogenic signaling of IGF-II. From E13.5 onward, IGF1R interacts with both IGF-I and IGF-II, while IGF-II recognizes an additional unknown receptor (XR). In contrast with the embryo proper, placental growth is served exclusively by an IGF-II-XR interaction. Additional genetic data suggested that the type 2IGF/mannose 6-phosphate receptor is an unlikely candidate for XR. Postnatal growth curves indicated that surviving Igf-1(-/-) mutants, which are infertile and exhibit delayed bone development, continue to grow with a retarded rate after birth in comparison with wild-type littermates and become 30% of normal weight as adults.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Positional cloning of the APECED gene.

              Autoimmune polyglandular syndrome type I (APS 1, also called APECED) is an autosomal-recessive disorder that maps to human chromosome 21q22.3 between markers D21S49 and D21S171 by linkage studies. We have isolated a novel gene from this region, AIRE (autoimmune regulator), which encodes a protein containing motifs suggestive of a transcription factor including two zinc-finger (PHD-finger) motifs, a proline-rich region and three LXXLL motifs. Two mutations, a C-->T substitution that changes the Arg 257 (CGA) to a stop codon (TGA) and an A-->G substitution that changes the Lys 83 (AAG) to a Glu codon (GAG), were found in this novel gene in Swiss and Finnish APECED patients. The Arg257stop (R257X) is the predominant mutation in Finnish APECED patients, accounting for 10/12 alleles studied. These results indicate that this gene is responsible for the pathogenesis of APECED. The identification of the gene defective in APECED should facilitate the genetic diagnosis and potential treatment of the disease and further enhance our general understanding of the mechanisms underlying autoimmune diseases.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Endocrinol (Lausanne)
                Front Endocrinol (Lausanne)
                Front. Endocrinol.
                Frontiers in Endocrinology
                Frontiers Media S.A.
                1664-2392
                12 July 2018
                2018
                : 9
                : 381
                Affiliations
                [1] 1Laboratory on Thymus Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation , Rio de Janeiro, Brazil
                [2] 2National Institute of Science and Technology on Neuroimmunomodulation, Oswaldo Cruz Institute, Oswaldo Cruz Foundation , Rio de Janeiro, Brazil
                [3] 3Department of Morphology, Physiology and Basic Pathology, Ribeirão Preto Medical School, School of Dentistry of Ribeirão Preto, University of São Paulo , Ribeirão Preto, Brazil
                [4] 4Department of Genetics, Ribeirão Preto Medical School, University of São Paulo , Ribeirão Preto, Brazil
                Author notes

                Edited by: Vincent Geenen, University of Liège, Belgium

                Reviewed by: Karsten Kretschmer, Technische Universität Dresden, Germany; Nils Lambrecht, VA Long Beach Healthcare System and University of California, Irvine, United States

                *Correspondence: Daniella A. Mendes-da-Cruz daniella@ 123456ioc.fiocruz.br

                This article was submitted to Neuroendocrine Science, a section of the journal Frontiers in Endocrinology

                Article
                10.3389/fendo.2018.00381
                6052664
                30050502
                2fc45bd2-d006-48e7-a122-ce35b778ea19
                Copyright © 2018 Mendes-da-Cruz, Lemos, Passos and Savino.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 31 January 2018
                : 22 June 2018
                Page count
                Figures: 1, Tables: 1, Equations: 0, References: 93, Pages: 9, Words: 7466
                Categories
                Endocrinology
                Mini Review

                Endocrinology & Diabetes
                non-obese diabetic mouse,type 1 diabetes,thymus,autoimmune diabetes,insulin,insulin-like growth factor,mirna

                Comments

                Comment on this article