31
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Prepulse inhibition predicts spatial working memory performance in the inbred Roman high- and low-avoidance rats and in genetically heterogeneous NIH-HS rats: relevance for studying pre-attentive and cognitive anomalies in schizophrenia

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Animal models of schizophrenia-relevant symptoms are increasingly important for progress in our understanding of the neurobiological basis of the disorder and for discovering novel and more specific treatments. Prepulse inhibition (PPI) and working memory, which are impaired in schizophrenic patients, are among the symptoms/processes modeled in those animal analogs. We have evaluated whether a genetically-selected rat model, the Roman high-avoidance inbred strain (RHA-I), displays PPI deficits as compared with its Roman low-avoidance (RLA-I) counterpart and the genetically heterogeneous NIH-HS rat stock. We have investigated whether PPI deficits predict spatial working memory impairments (in the Morris water maze; MWM) in these three rat types (Experiment 1), as well as in a separate sample of NIH-HS rats stratified according to their extreme (High, Medium, Low) PPI scores (Experiment 2). The results from Experiment 1 show that RHA-I rats display PPI and spatial working memory deficits compared to both RLA-I and NIH-HS rats. Likewise, in Experiment 2, “Low-PPI” NIH-HS rats present significantly impaired working memory with respect to “Medium-PPI” and “High-PPI” NIH-HS subgroups. Further support to these results comes from correlational, factorial, and multiple regression analyses, which reveal that PPI is positively associated with spatial working memory performance. Conversely, cued learning in the MWM was not associated with PPI. Thus, using genetically-selected and genetically heterogeneous rats, the present study shows, for the first time, that PPI is a positive predictor of performance in a spatial working memory task. These results may have translational value for schizophrenia symptom research in humans, as they suggest that either by psychogenetic selection or by focusing on extreme PPI scores from a genetically heterogeneous rat stock, it is possible to detect a useful (perhaps “at risk”) phenotype to study cognitive anomalies linked to schizophrenia.

          Related collections

          Most cited references79

          • Record: found
          • Abstract: found
          • Article: not found

          Selective impairment of learning and blockade of long-term potentiation by an N-methyl-D-aspartate receptor antagonist, AP5.

          Recent work has shown that the hippocampus contains a class of receptors for the excitatory amino acid glutamate that are activated by N-methyl-D-aspartate (NMDA) and that exhibit a peculiar dependency on membrane voltage in becoming active only on depolarization. Blockade of these sites with the drug aminophosphonovaleric acid (AP5) does not detectably affect synaptic transmission in the hippocampus, but prevents the induction of hippocampal long-term potentiation (LTP) following brief high-frequency stimulation. We now report that chronic intraventricular infusion of D,L-AP5 causes a selective impairment of place learning, which is highly sensitive to hippocampal damage, without affecting visual discrimination learning, which is not. The L-isomer of AP5 did not produce behavioural effects. AP5 treatment also suppressed LTP in vivo. These results suggest that NMDA receptors are involved in spatial learning, and add support to the hypothesis that LTP is involved in some, but not all, forms of learning.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Animal models of schizophrenia.

            Developing reliable, predictive animal models for complex psychiatric disorders, such as schizophrenia, is essential to increase our understanding of the neurobiological basis of the disorder and for the development of novel drugs with improved therapeutic efficacy. All available animal models of schizophrenia fit into four different induction categories: developmental, drug-induced, lesion or genetic manipulation, and the best characterized examples of each type are reviewed herein. Most rodent models have behavioural phenotype changes that resemble 'positive-like' symptoms of schizophrenia, probably reflecting altered mesolimbic dopamine function, but fewer models also show altered social interaction, and learning and memory impairment, analogous to negative and cognitive symptoms of schizophrenia respectively. The negative and cognitive impairments in schizophrenia are resistant to treatment with current antipsychotics, even after remission of the psychosis, which limits their therapeutic efficacy. The MATRICS initiative developed a consensus on the core cognitive deficits of schizophrenic patients, and recommended a standardized test battery to evaluate them. More recently, work has begun to identify specific rodent behavioural tasks with translational relevance to specific cognitive domains affected in schizophrenia, and where available this review focuses on reporting the effect of current and potential antipsychotics on these tasks. The review also highlights the need to develop more comprehensive animal models that more adequately replicate deficits in negative and cognitive symptoms. Increasing information on the neurochemical and structural CNS changes accompanying each model will also help assess treatments that prevent the development of schizophrenia rather than treating the symptoms, another pivotal change required to enable new more effective therapeutic strategies to be developed. © 2011 The Authors. British Journal of Pharmacology © 2011 The British Pharmacological Society.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Schizophrenia-relevant behavioral testing in rodent models: a uniquely human disorder?

              Animal models are extremely useful tools in defining pathogenesis and treatment of human disease. Creating adequate animal models of complex neuropsychiatric disorders such as schizophrenia represents a particularly difficult challenge. In the case of schizophrenia, little is certain regarding the etiology or pathophysiology of the human disease. In addition, many symptoms of the disorder are difficult to measure directly in rodents. These challenges have not daunted neuroscientists who are capitalizing on even subtle overlaps between this uniquely human disorder and rodent behavior. In this perspective, we detail the features of ideal animal models of schizophrenia, the potential utility of such models, and the rodent behaviors used to model certain aspects of schizophrenia. The development of such models will provide critical tools to understand the pathogenesis of schizophrenia and novel insights into therapeutic approaches to this complex disorder.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Behav Neurosci
                Front Behav Neurosci
                Front. Behav. Neurosci.
                Frontiers in Behavioral Neuroscience
                Frontiers Media S.A.
                1662-5153
                18 August 2015
                2015
                : 9
                : 213
                Affiliations
                [1] 1Medical Psychology Unit, Department of Psychiatry and Forensic Medicine, School of Medicine, Institute of Neurosciences, Autonomous University of Barcelona Barcelona, Spain
                [2] 2Section of Pharmaceutical, Pharmacological and Nutraceutical Sciences, Department of Life and Environmental Sciences, University of Cagliari Cagliari, Italy
                Author notes

                Edited by: Dorota Frydecka, Wroclaw Medical University, Poland

                Reviewed by: Rutsuko Ito, University of Toronto, Canada; Aleksei Yurievich Egorov, Russian Academy of Sciences, Russia

                *Correspondence: Ignasi Oliveras and Alberto Fernández-Teruel, Medical Psychology Unit, Department of Psychiatry and Forensic Medicine, School of Medicine, Autonomous University of Barcelona, 08913 Bellaterra, Barcelona, Spain ignasi.oliveras@ 123456uab.cat ; albert.fernandez.teruel@ 123456uab.cat
                Article
                10.3389/fnbeh.2015.00213
                4539526
                26347624
                2fc7fee4-925e-4994-b453-738cb6ae2b7c
                Copyright © 2015 Oliveras, Río-Álamos, Cañete, Blázquez, Martínez-Membrives, Giorgi, Corda, Tobeña and Fernández-Teruel.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 07 May 2015
                : 30 July 2015
                Page count
                Figures: 6, Tables: 6, Equations: 1, References: 83, Pages: 16, Words: 12211
                Categories
                Neuroscience
                Original Research

                Neurosciences
                prepulse inhibition,spatial working memory,cognitive deficits,schizophrenia-relevant symptoms,schizophreniform rat model,roman high-avoidance rats,roman low-avoidance rats,genetically heterogeneous rats

                Comments

                Comment on this article