6
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      An assessment of oil palm plantation aboveground biomass stocks on tropical peat using destructive and non-destructive methods

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The recent expansion of oil palm (OP, Elaeis guineensis) plantations into tropical forest peatlands has resulted in ecosystem carbon emissions. However, estimates of net carbon flux from biomass changes require accurate estimates of the above ground biomass (AGB) accumulation rate of OP on peat. We quantify the AGB stocks of an OP plantation on drained peat in Malaysia from 3 to 12 years after planting using destructive harvests supported by non-destructive surveys of a further 902 palms. Peat specific allometric equations for palm (R 2 = 0.92) and frond biomass are developed and contrasted to existing allometries for OP on mineral soils. Allometries are used to upscale AGB estimates to the plantation block-level. Aboveground biomass stocks on peat accumulated at ~6.39 ± 1.12 Mg ha −1 per year in the first 12 years after planting, increasing to ~7.99 ± 0.95 Mg ha −1 yr −1 when a ‘perfect’ plantation was modelled. High inter-palm and inter-block AGB variability was observed in mature classes as a result of variations in palm leaning and mortality. Validation of the allometries defined and expansion of non-destructive inventories across alternative plantations and age classes on peat would further strengthen our understanding of peat OP AGB accumulation rates.

          Related collections

          Most cited references34

          • Record: found
          • Abstract: not found
          • Article: not found

          Carbon emissions from forest conversion by Kalimantan oil palm plantations

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Committed carbon emissions, deforestation, and community land conversion from oil palm plantation expansion in West Kalimantan, Indonesia.

            Industrial agricultural plantations are a rapidly increasing yet largely unmeasured source of tropical land cover change. Here, we evaluate impacts of oil palm plantation development on land cover, carbon flux, and agrarian community lands in West Kalimantan, Indonesian Borneo. With a spatially explicit land change/carbon bookkeeping model, parameterized using high-resolution satellite time series and informed by socioeconomic surveys, we assess previous and project future plantation expansion under five scenarios. Although fire was the primary proximate cause of 1989-2008 deforestation (93%) and net carbon emissions (69%), by 2007-2008, oil palm directly caused 27% of total and 40% of peatland deforestation. Plantation land sources exhibited distinctive temporal dynamics, comprising 81% forests on mineral soils (1994-2001), shifting to 69% peatlands (2008-2011). Plantation leases reveal vast development potential. In 2008, leases spanned ∼65% of the region, including 62% on peatlands and 59% of community-managed lands, yet <10% of lease area was planted. Projecting business as usual (BAU), by 2020 ∼40% of regional and 35% of community lands are cleared for oil palm, generating 26% of net carbon emissions. Intact forest cover declines to 4%, and the proportion of emissions sourced from peatlands increases 38%. Prohibiting intact and logged forest and peatland conversion to oil palm reduces emissions only 4% below BAU, because of continued uncontrolled fire. Protecting logged forests achieves greater carbon emissions reductions (21%) than protecting intact forests alone (9%) and is critical for mitigating carbon emissions. Extensive allocated leases constrain land management options, requiring trade-offs among oil palm production, carbon emissions mitigation, and maintaining community landholdings.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              A Reassessment of Carbon Content in Tropical Trees

              Accurate knowledge of carbon (C) content in live wood is essential for quantifying tropical forest C stocks, yet generic assumptions (such as biomass consisting of 50% carbon on a weight/weight basis) remain widely used despite being supported by little chemical analysis. Empirical data from stem cores of 59 Panamanian rainforest tree species demonstrate that wood C content is highly variable among co-occurring species, with an average (47.4±2.51% S.D.) significantly lower than widely assumed values. Prior published values have neglected to account for volatile C content of tropical woods. By comparing freeze- and oven-dried wood samples, we show that volatile C is non-negligible, and excluding the volatile fraction underestimates wood C content by 2.48±1.28% (S.D.) on average. Wood C content varied substantially among species (from 41.9–51.6%), but was neither strongly phylogenetically conserved, nor correlated to ecological (i.e. wood density, maximum tree height) or demographic traits (i.e. relative growth rate, mortality rate). Overall, assuming generic C fractions in tropical wood overestimates forest C stocks by ∼3.3–5.3%, a non-trivial margin of error leading to overestimates of 4.1–6.8 Mg C ha−1 in a 50-ha forest dynamics plot on Barro Colorado Island, Panama. In addition to addressing other sources of error in tropical forest C accounting, such as uncertainties in allometric models and belowground biomass, compilation and use of species-specific C fractions for tropical tree species would substantially improve both local and global estimates of terrestrial C stocks and fluxes.
                Bookmark

                Author and article information

                Contributors
                kl378@exeter.ac.uk
                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group UK (London )
                2045-2322
                10 February 2020
                10 February 2020
                2020
                : 10
                : 2230
                Affiliations
                [1 ]ISNI 0000 0004 1936 8024, GRID grid.8391.3, Geography, College of Life and Environmental Sciences, University of Exeter, Streatham Campus, ; Rennes Drive, Exeter, EX4 4RJ UK
                [2 ]ISNI 0000 0001 2170 0530, GRID grid.410876.c, Tropical Peat Research Institute, Biological Research Division, Malaysian Palm Oil Board, 6, Persiaran Institusi, Bandar Baru Bangi, ; 43000 Kajang, Selangor Malaysia
                [3 ]ISNI 0000 0001 0462 7212, GRID grid.1006.7, School of Natural and Environmental Science, Newcastle University, ; Drummond Building, Newcastle-upon-Tyne, NE1 7RU UK
                Article
                58982
                10.1038/s41598-020-58982-9
                7010673
                32041975
                2fcb548e-6c23-416d-a097-24f63ccc14b5
                © The Author(s) 2020

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 25 October 2019
                : 20 January 2020
                Funding
                Funded by: Malaysian Palm Oil Board
                Categories
                Article
                Custom metadata
                © The Author(s) 2020

                Uncategorized
                agroecology,ecology,carbon cycle,environmental sciences,environmental impact
                Uncategorized
                agroecology, ecology, carbon cycle, environmental sciences, environmental impact

                Comments

                Comment on this article