65
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Rapid, modular and reliable construction of complex mammalian gene circuits

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          We developed a framework for quick and reliable construction of complex gene circuits for genetically engineering mammalian cells. Our hierarchical framework is based on a novel nucleotide addressing system for defining the position of each part in an overall circuit. With this framework, we demonstrate construction of synthetic gene circuits of up to 64 kb in size comprising 11 transcription units and 33 basic parts. We show robust gene expression control of multiple transcription units by small molecule inducers in human cells with transient transfection and stable chromosomal integration of these circuits. This framework enables development of complex gene circuits for engineering mammalian cells with unprecedented speed, reliability and scalability and should have broad applicability in a variety of areas including mammalian cell fermentation, cell fate reprogramming and cell-based assays.

          Related collections

          Most cited references23

          • Record: found
          • Abstract: not found
          • Article: not found

          Enzymatic assembly of DNA molecules up to several hundred kilobases.

          We describe an isothermal, single-reaction method for assembling multiple overlapping DNA molecules by the concerted action of a 5' exonuclease, a DNA polymerase and a DNA ligase. First we recessed DNA fragments, yielding single-stranded DNA overhangs that specifically annealed, and then covalently joined them. This assembly method can be used to seamlessly construct synthetic and natural genes, genetic pathways and entire genomes, and could be a useful molecular engineering tool.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Direct conversion of fibroblasts to functional neurons by defined factors

            Cellular differentiation and lineage commitment are considered robust and irreversible processes during development. Recent work has shown that mouse and human fibroblasts can be reprogrammed to a pluripotent state with a combination of four transcription factors. This raised the question of whether transcription factors could directly induce other defined somatic cell fates, and not only an undifferentiated state. We hypothesized that combinatorial expression of neural lineage-specific transcription factors could directly convert fibroblasts into neurons. Starting from a pool of nineteen candidate genes, we identified a combination of only three factors, Ascl1, Brn2, and Myt1l, that suffice to rapidly and efficiently convert mouse embryonic and postnatal fibroblasts into functional neurons in vitro. These induced neuronal (iN) cells express multiple neuron-specific proteins, generate action potentials, and form functional synapses. Generation of iN cells from non-neural lineages could have important implications for studies of neural development, neurological disease modeling, and regenerative medicine.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Harnessing homologous recombination in vitro to generate recombinant DNA via SLIC.

              We describe a new cloning method, sequence and ligation-independent cloning (SLIC), which allows the assembly of multiple DNA fragments in a single reaction using in vitro homologous recombination and single-strand annealing. SLIC mimics in vivo homologous recombination by relying on exonuclease-generated ssDNA overhangs in insert and vector fragments, and the assembly of these fragments by recombination in vitro. SLIC inserts can also be prepared by incomplete PCR (iPCR) or mixed PCR. SLIC allows efficient and reproducible assembly of recombinant DNA with as many as 5 and 10 fragments simultaneously. SLIC circumvents the sequence requirements of traditional methods and functions much more efficiently at very low DNA concentrations when combined with RecA to catalyze homologous recombination. This flexibility allows much greater versatility in the generation of recombinant DNA for the purposes of synthetic biology.
                Bookmark

                Author and article information

                Journal
                Nucleic Acids Res
                Nucleic Acids Res
                nar
                nar
                Nucleic Acids Research
                Oxford University Press
                0305-1048
                1362-4962
                September 2013
                11 July 2013
                11 July 2013
                : 41
                : 16
                : e156
                Affiliations
                1Department of Biological Engineering, Massachusetts Institute of Technology, 40 Ames Street, Cambridge, MA 02142, USA, 2Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, 40 Ames Street, Cambridge, MA 02142, USA and 3INRIA Paris-Rocquencourt, Le Chesnay, 78153, France
                Author notes
                *To whom correspondence should be addressed. Tel: +1 617 253 8966; Fax: +1 617 452 2631; Email: rweiss@ 123456mit.edu

                The authors wish it to be known that, in their opinion, the first two authors should be regarded as joint First Authors.

                Article
                gkt605
                10.1093/nar/gkt605
                3763561
                23847100
                2fd967d6-d94a-42cf-a3b0-0bb5c162633a
                © The Author(s) 2013. Published by Oxford University Press.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/3.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 28 April 2013
                : 10 June 2013
                : 18 June 2013
                Page count
                Pages: 6
                Categories
                Methods Online

                Genetics
                Genetics

                Comments

                Comment on this article