+1 Recommend
0 collections
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Waking the sleeping dragon: gene expression profiling reveals adaptive strategies of the hibernating reptile Pogona vitticeps

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.



          Hibernation is a physiological state exploited by many animals exposed to prolonged adverse environmental conditions associated with winter. Large changes in metabolism and cellular function occur, with many stress response pathways modulated to tolerate physiological challenges that might otherwise be lethal. Many studies have sought to elucidate the molecular mechanisms of mammalian hibernation, but detailed analyses are lacking in reptiles. Here we examine gene expression in the Australian central bearded dragon ( Pogona vitticeps) using mRNA-seq and label-free quantitative mass spectrometry in matched brain, heart and skeletal muscle samples from animals at late hibernation, 2 days post-arousal and 2 months post-arousal.


          We identified differentially expressed genes in all tissues between hibernation and post-arousal time points; with 4264 differentially expressed genes in brain, 5340 differentially expressed genes in heart, and 5587 differentially expressed genes in skeletal muscle. Furthermore, we identified 2482 differentially expressed genes across all tissues. Proteomic analysis identified 743 proteins (58 differentially expressed) in brain, 535 (57 differentially expressed) in heart, and 337 (36 differentially expressed) in skeletal muscle. Tissue-specific analyses revealed enrichment of protective mechanisms in all tissues, including neuroprotective pathways in brain, cardiac hypertrophic processes in heart, and atrophy protective pathways in skeletal muscle. In all tissues stress response pathways were induced during hibernation, as well as evidence for gene expression regulation at transcription, translation and post-translation.


          These results reveal critical stress response pathways and protective mechanisms that allow for maintenance of both tissue-specific function, and survival during hibernation in the central bearded dragon. Furthermore, we provide evidence for multiple levels of gene expression regulation during hibernation, particularly enrichment of miRNA-mediated translational repression machinery; a process that would allow for rapid and energy efficient reactivation of translation from mature mRNA molecules at arousal. This study is the first molecular investigation of its kind in a hibernating reptile, and identifies strategies not yet observed in other hibernators to cope stress associated with this remarkable state of metabolic depression.

          Electronic supplementary material

          The online version of this article (10.1186/s12864-019-5750-x) contains supplementary material, which is available to authorized users.

          Related collections

          Most cited references 83

          • Record: found
          • Abstract: found
          • Article: not found

          Argonaute2 is the catalytic engine of mammalian RNAi.

          Gene silencing through RNA interference (RNAi) is carried out by RISC, the RNA-induced silencing complex. RISC contains two signature components, small interfering RNAs (siRNAs) and Argonaute family proteins. Here, we show that the multiple Argonaute proteins present in mammals are both biologically and biochemically distinct, with a single mammalian family member, Argonaute2, being responsible for messenger RNA cleavage activity. This protein is essential for mouse development, and cells lacking Argonaute2 are unable to mount an experimental response to siRNAs. Mutations within a cryptic ribonuclease H domain within Argonaute2, as identified by comparison with the structure of an archeal Argonaute protein, inactivate RISC. Thus, our evidence supports a model in which Argonaute contributes "Slicer" activity to RISC, providing the catalytic engine for RNAi.
            • Record: found
            • Abstract: found
            • Article: not found

            Co-occupancy by multiple cardiac transcription factors identifies transcriptional enhancers active in heart.

            Identification of genomic regions that control tissue-specific gene expression is currently problematic. ChIP and high-throughput sequencing (ChIP-seq) of enhancer-associated proteins such as p300 identifies some but not all enhancers active in a tissue. Here we show that co-occupancy of a chromatin region by multiple transcription factors (TFs) identifies a distinct set of enhancers. GATA-binding protein 4 (GATA4), NK2 transcription factor-related, locus 5 (NKX2-5), T-box 5 (TBX5), serum response factor (SRF), and myocyte-enhancer factor 2A (MEF2A), here referred to as "cardiac TFs," have been hypothesized to collaborate to direct cardiac gene expression. Using a modified ChIP-seq procedure, we defined chromatin occupancy by these TFs and p300 genome wide and provided unbiased support for this hypothesis. We used this principle to show that co-occupancy of a chromatin region by multiple TFs can be used to identify cardiac enhancers. Of 13 such regions tested in transient transgenic embryos, seven (54%) drove cardiac gene expression. Among these regions were three cardiac-specific enhancers of Gata4, Srf, and swItch/sucrose nonfermentable-related, matrix-associated, actin-dependent regulator of chromatin, subfamily d, member 3 (Smarcd3), an epigenetic regulator of cardiac gene expression. Multiple cardiac TFs and p300-bound regions were associated with cardiac-enriched genes and with functional annotations related to heart development. Importantly, the large majority (1,375/1,715) of loci bound by multiple cardiac TFs did not overlap loci bound by p300. Our data identify thousands of prospective cardiac regulatory sequences and indicate that multiple TF co-occupancy of a genomic region identifies developmentally relevant enhancers that are largely distinct from p300-associated enhancers.
              • Record: found
              • Abstract: found
              • Article: not found

              miRNA repression involves GW182-mediated recruitment of CCR4-NOT through conserved W-containing motifs.

              miRNA-mediated repression in animals is dependent on the GW182 protein family. GW182 proteins are recruited to the miRNA repression complex through direct interaction with Argonaute proteins, and they function downstream to repress target mRNA. Here we demonstrate that in human and Drosophila melanogaster cells, the critical repressive features of both the N-terminal and C-terminal effector domains of GW182 proteins are Gly/Ser/Thr-Trp (G/S/TW) or Trp-Gly/Ser/Thr (WG/S/T) motifs. These motifs, which are dispersed across both domains and act in an additive manner, function by recruiting components of the CCR4-NOT deadenylation complex. A heterologous yeast polypeptide with engineered WG/S/T motifs acquired the ability to repress tethered mRNA and to interact with the CCR4-NOT complex. These results identify previously unknown effector motifs functioning as important mediators of miRNA-induced silencing in both species, and they reveal that recruitment of the CCR4-NOT complex by tryptophan-containing motifs acts downstream of GW182 to repress mRNAs, including inhibiting translation independently of deadenylation.

                Author and article information

                BMC Genomics
                BMC Genomics
                BMC Genomics
                BioMed Central (London )
                6 June 2019
                6 June 2019
                : 20
                [1 ]ISNI 0000 0004 4902 0432, GRID grid.1005.4, School of Biotechnology and Biomolecular Sciences, Faculty of Science, , UNSW Sydney, ; Sydney, NSW 2052 Australia
                [2 ]ISNI 0000 0004 0385 7472, GRID grid.1039.b, Institute for Applied Ecology, , University of Canberra, ; Canberra, ACT 2601 Australia
                [3 ]ISNI 0000 0004 4902 0432, GRID grid.1005.4, School of Women’s & Children’s Health, Faculty of Medicine, , UNSW Sydney, ; Sydney, NSW 2052 Australia
                [4 ]ISNI 0000 0001 2180 7477, GRID grid.1001.0, John Curtin School of Medical Research, , Australian National University, ; Canberra, 2601 ACT Australia
                [5 ]ISNI 0000 0004 0421 8357, GRID grid.410425.6, Present address: Center for Gene Therapy, Beckman Research Institute of the City of Hope, ; Duarte, CA 91010 USA
                © The Author(s). 2019

                Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License ( http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

                Funded by: Australian Research Council
                Award ID: DP170101147
                Award Recipient :
                Research Article
                Custom metadata
                © The Author(s) 2019


                Comment on this article