+1 Recommend
1 collections
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Systematic review and meta-analysis of the benefit of celecoxib in treating advanced non-small-cell lung cancer

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.



          The clinical benefit of a selective cyclooxygenase-2 inhibitor, celecoxib, combined with anticancer therapy in advanced non-small-cell lung cancer (NSCLC) remains unclear. A meta-analysis was performed to address the efficacy and safety of celecoxib in patients with advanced NSCLC.

          Materials and methods

          Three databases, including PubMed, EMBASE, and the Cochrane Library, were systematically searched for available literature until March 1, 2018. Data on tumor response rates, one-year survival, overall survival, progression-free survival, and toxicities were extracted from the included randomized clinical trials. Subgroup analysis was carried out according to the line of treatment. Review Manager 5.3 software was applied to conduct the meta-analysis.


          A total of 7 randomized controlled trials involving 1,559 patients with advanced NSCLC were enrolled for analysis. The pooled overall response rate (ORR) of celecoxib added to systemic therapy was not significantly improved (risk ratio [RR] =1.14, 95% CI =0.96–1.35, P=0.13). Additionally, no differences were observed between the celecoxib and placebo groups regarding 1-year survival (RR =0.99, 95% CI =0.88–1.12, P=0.91). Subgroup analysis showed that adding celecoxib to the first-line treatment significantly improved the ORR (RR =1.21, 95% CI =1.01–1.44, P=0.04) and partial response rate (RR =1.26, 95% CI =1.01–1.58, P=0.04). The aggregated Kaplan–Meier analysis found no significant difference between celecoxib and placebo regarding the 5-year overall survival (median, 12.9 vs 12.5 months, P=0.553) and 5-year progression-free survival (median, 7.4 vs 7.2 months, P=0.641). The increased RR of leukopenia (RR =1.25, 95% CI =1.03–1.50) and thrombocytopenia (RR =1.39, 95% CI =1.11–1.75) indicated that celecoxib increased hematologic toxicities (grade ≥III). However, celecoxib did not increase the related risks of thrombosis or embolism (RR =1.26, 95% CI =0.66–2.39) and cardiac ischemia (RR =1.16, 95% CI =0.39–3.44).


          Celecoxib had no benefit on survival indices for advanced NSCLC but improved the ORR of first-line treatment. Additionally, celecoxib increased the rate of hematologic toxicities without increasing the risk of cardiovascular events.

          Related collections

          Most cited references 37

          • Record: found
          • Abstract: found
          • Article: not found

          American Society of Clinical Oncology Clinical Practice Guideline update on chemotherapy for stage IV non-small-cell lung cancer.

          The purpose of this article is to provide updated recommendations for the treatment of patients with stage IV non-small-cell lung cancer. A literature search identified relevant randomized trials published since 2002. The scope of the guideline was narrowed to chemotherapy and biologic therapy. An Update Committee reviewed the literature and made updated recommendations. One hundred sixty-two publications met the inclusion criteria. Recommendations were based on treatment strategies that improve overall survival. Treatments that improve only progression-free survival prompted scrutiny of toxicity and quality of life. For first-line therapy in patients with performance status of 0 or 1, a platinum-based two-drug combination of cytotoxic drugs is recommended. Nonplatinum cytotoxic doublets are acceptable for patients with contraindications to platinum therapy. For patients with performance status of 2, a single cytotoxic drug is sufficient. Stop first-line cytotoxic chemotherapy at disease progression or after four cycles in patients who are not responding to treatment. Stop two-drug cytotoxic chemotherapy at six cycles even in patients who are responding to therapy. The first-line use of gefitinib may be recommended for patients with known epidermal growth factor receptor (EGFR) mutation; for negative or unknown EGFR mutation status, cytotoxic chemotherapy is preferred. Bevacizumab is recommended with carboplatin-paclitaxel, except for patients with certain clinical characteristics. Cetuximab is recommended with cisplatin-vinorelbine for patients with EGFR-positive tumors by immunohistochemistry. Docetaxel, erlotinib, gefitinib, or pemetrexed is recommended as second-line therapy. Erlotinib is recommended as third-line therapy for patients who have not received prior erlotinib or gefitinib. Data are insufficient to recommend the routine third-line use of cytotoxic drugs. Data are insufficient to recommend routine use of molecular markers to select chemotherapy.
            • Record: found
            • Abstract: found
            • Article: not found

            Antiangiogenic and antitumor activities of cyclooxygenase-2 inhibitors.

            We provide evidence that cyclooxygenase (COX)-2-derived prostaglandins contribute to tumor growth by inducing newly formed blood vessels (neoangiogenesis) that sustain tumor cell viability and growth. COX-2 is expressed within human tumor neovasculature as well as in neoplastic cells present in human colon, breast, prostate, and lung cancer biopsy tissue. COX-1 is broadly distributed in normal, as well as in neoplastic, tissues. The contribution of COX-2 to human tumor growth was indicated by the ability of celecoxib, an agent that inhibits the COX-2 enzyme, to suppress growth of lung and colon tumors implanted into recipient mice. Mechanistically, celecoxib demonstrated a potent antiangiogenic activity. In a rat model of angiogenesis, we observe that corneal blood vessel formation is suppressed by celecoxib, but not by a COX-1 inhibitor. These and other data indicate that COX-2 and COX-2-derived prostaglandins may play a major role in development of cancer through numerous biochemical mechanisms, including stimulation of tumor cell growth and neovascularization. The ability of celecoxib to block angiogenesis and suppress tumor growth suggests a novel application of this anti-inflammatory drug in the treatment of human cancer.
              • Record: found
              • Abstract: found
              • Article: not found

              Increased expression of cyclooxygenase 2 occurs frequently in human lung cancers, specifically in adenocarcinomas.

              Cyclooxygenase (COX)-2 expression was immunohistochemically examined in 59 human lung cancers as well as in normal and premalignant lung specimens. In contrast to scattered weak reactivity seen in normal peripheral airway epithelial cells, markedly up-regulated COX-2 expression was detected in about one-third of atypical adenomatous hyperplasias and carcinoma in situ specimens, and a significant increase in COX-2 expression was observed in 70% of invasive adenocarcinoma cases. Interestingly, the proportion of adenocarcinoma cells with marked COX-2 expression was much greater in lymph node metastases than in the corresponding primary tumors. In contrast, small cell carcinomas showed virtually negligible expression, and squamous cell carcinomas showed infrequent and low expression. These findings suggest that an increase in COX-2 expression may be associated with the development of adenocarcinomas and possibly with acquisition of an invasive and metastatic phenotype.

                Author and article information

                Drug Des Devel Ther
                Drug Des Devel Ther
                Drug Design, Development and Therapy
                Drug Design, Development and Therapy
                Dove Medical Press
                07 August 2018
                : 12
                : 2455-2466
                Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, People’s Republic of China, luopeng@ 123456smu.edu.cn ; blacktiger@ 123456139.com
                Author notes
                Correspondence: Peng Luo; Jian Zhang, Department of Oncology, Zhujiang Hospital, Southern Medical University, 253 Industrial Avenue, Guangzhou 510282, Guangdong, People’s Republic of China, Tel +86 139 2509 1863, Fax +86 20 6164 3888, Email luopeng@ 123456smu.edu.cn ; blacktiger@ 123456139.com

                These authors contributed equally to this work

                © 2018 Yi et al. This work is published and licensed by Dove Medical Press Limited

                The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution – Non Commercial (unported, v3.0) License ( http://creativecommons.org/licenses/by-nc/3.0/). By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed.

                Original Research


                Comment on this article