Blog
About

  • Record: found
  • Abstract: not found
  • Article: not found

Paired helical filament tau (PHFtau) in Niemann-Pick type C disease is similar to PHFtau in Alzheimer's disease

Read this article at

ScienceOpenPublisher
Bookmark
      There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

      Related collections

      Most cited references 16

      • Record: found
      • Abstract: found
      • Article: not found

      A68: a major subunit of paired helical filaments and derivatized forms of normal Tau.

      Putative Alzheimer disease (AD)-specific proteins (A68) were purified to homogeneity and shown to be major subunits of one form of paired helical filaments (PHFs). The amino acid sequence and immunological data indicate that the backbone of A68 is indistinguishable from that of the protein tau (tau), but A68 could be distinguished from normal human tau by the degree to which A68 was phosphorylated and by the specific residues in A68 that served as phosphate acceptors. The larger apparent relative molecular mass (Mr) of A68, compared to normal human tau, was attributed to abnormal phosphorylation of A68 because enzymatic dephosphorylation of A68 reduced its Mr to close to that of normal tau. Moreover, the LysSerProVal motif in normal human tau appeared to be an abnormal phosphorylation site in A68 because the Ser in this motif was a phosphate acceptor site in A68, but not in normal human tau. Thus, the major subunits of a class of PHFs are A68 proteins and the excessive or inappropriate phosphorylation of normal tau may change its apparent Mr, thus transforming tau into A68.
        Bookmark
        • Record: found
        • Abstract: found
        • Article: not found

        Biopsy-derived adult human brain tau is phosphorylated at many of the same sites as Alzheimer's disease paired helical filament tau.

        Tau from Alzheimer's disease (AD) paired helical filaments (PHF-tau) is phosphorylated at sites not found in autopsy-derived adult tau from normal human brains, and this suggested that PHF-tau is abnormally phosphorylated. To explore this hypothesis, we examined human adult tau from brain biopsies and demonstrated that biopsy-derived tau is phosphorylated at most sites thought to be abnormally phosphorylated in PHF-tau. These sites also were phosphorylated in autopsy-derived human fetal tau and rapidly processed rat tau. The hypophosphorylation of autopsy-derived adult human tau is due to rapid dephosphorylation postmortem, and protein phosphatases 2A (PP2A) and 2B (PP2B) in human brain biopsies dephosphorylate tau in a site-specific manner. The down-regulation of phosphatases (i.e., PP2A and PP2B) in the AD brain could lead to the generation of maximally phosphorylated PHF-tau that does not bind microtubules and aggregates as PHFs in neurofibrillary tangles and dystrophic neurites.
          Bookmark
          • Record: found
          • Abstract: found
          • Article: not found

          The abnormal phosphorylation of tau protein at Ser-202 in Alzheimer disease recapitulates phosphorylation during development.

          Tau is a neuronal phosphoprotein whose expression is developmentally regulated. A single tau isoform is expressed in fetal human brain but six isoforms are expressed in adult brain, with the fetal isoform corresponding to the shortest of the adult isoforms. Phosphorylation of tau is also developmentally regulated, as fetal tau is phosphorylated at more sites than adult tau. In Alzheimer disease, the six adult tau isoforms become abnormally phosphorylated and form the paired helical filament, the major fibrous component of the characteristic neurofibrillary lesions. We show here that Ser-202 (in the numbering of the longest human brain tau isoform) is a phosphorylation site that distinguishes fetal from adult tau and we identify it as one of the abnormal phosphorylation sites in Alzheimer disease. The abnormal phosphorylation of tau at Ser-202 in Alzheimer disease thus recapitulates normal phosphorylation during development.
            Bookmark

            Author and article information

            Journal
            Acta Neuropathologica
            Acta Neuropathol
            Springer Nature
            0001-6322
            1432-0533
            December 1995
            December 1995
            : 90
            : 6
            : 547-551
            10.1007/BF00318566
            © 1995
            Product

            Comments

            Comment on this article