21
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Random KNN feature selection - a fast and stable alternative to Random Forests

      research-article
      1 , 2 , , 1 , 3 ,
      BMC Bioinformatics
      BioMed Central

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Successfully modeling high-dimensional data involving thousands of variables is challenging. This is especially true for gene expression profiling experiments, given the large number of genes involved and the small number of samples available. Random Forests (RF) is a popular and widely used approach to feature selection for such "small n, large p problems." However, Random Forests suffers from instability, especially in the presence of noisy and/or unbalanced inputs.

          Results

          We present RKNN-FS, an innovative feature selection procedure for "small n, large p problems." RKNN-FS is based on Random KNN (RKNN), a novel generalization of traditional nearest-neighbor modeling. RKNN consists of an ensemble of base k-nearest neighbor models, each constructed from a random subset of the input variables. To rank the importance of the variables, we define a criterion on the RKNN framework, using the notion of support. A two-stage backward model selection method is then developed based on this criterion. Empirical results on microarray data sets with thousands of variables and relatively few samples show that RKNN-FS is an effective feature selection approach for high-dimensional data. RKNN is similar to Random Forests in terms of classification accuracy without feature selection. However, RKNN provides much better classification accuracy than RF when each method incorporates a feature-selection step. Our results show that RKNN is significantly more stable and more robust than Random Forests for feature selection when the input data are noisy and/or unbalanced. Further, RKNN-FS is much faster than the Random Forests feature selection method (RF-FS), especially for large scale problems, involving thousands of variables and multiple classes.

          Conclusions

          Given the superiority of Random KNN in classification performance when compared with Random Forests, RKNN-FS's simplicity and ease of implementation, and its superiority in speed and stability, we propose RKNN-FS as a faster and more stable alternative to Random Forests in classification problems involving feature selection for high-dimensional datasets.

          Related collections

          Most cited references16

          • Record: found
          • Abstract: not found
          • Article: not found

          Wrappers for feature subset selection

            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            The random subspace method for constructing decision forests

            Tin Ho (1998)
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Random forest: a classification and regression tool for compound classification and QSAR modeling.

              A new classification and regression tool, Random Forest, is introduced and investigated for predicting a compound's quantitative or categorical biological activity based on a quantitative description of the compound's molecular structure. Random Forest is an ensemble of unpruned classification or regression trees created by using bootstrap samples of the training data and random feature selection in tree induction. Prediction is made by aggregating (majority vote or averaging) the predictions of the ensemble. We built predictive models for six cheminformatics data sets. Our analysis demonstrates that Random Forest is a powerful tool capable of delivering performance that is among the most accurate methods to date. We also present three additional features of Random Forest: built-in performance assessment, a measure of relative importance of descriptors, and a measure of compound similarity that is weighted by the relative importance of descriptors. It is the combination of relatively high prediction accuracy and its collection of desired features that makes Random Forest uniquely suited for modeling in cheminformatics.
                Bookmark

                Author and article information

                Journal
                BMC Bioinformatics
                BMC Bioinformatics
                BioMed Central
                1471-2105
                2011
                18 November 2011
                : 12
                : 450
                Affiliations
                [1 ]The Department of Statistics, West Virginia University, Morgantown, WV 26506, USA
                [2 ]Health Effects Laboratory Division, the National Institute for Occupational Safety and Health, Morgantown, WV 26505, USA
                [3 ]The Lane Department of Computer Science and Electrical Engineering, West Virginia University, Morgantown, WV 26506, USA
                Article
                1471-2105-12-450
                10.1186/1471-2105-12-450
                3281073
                22093447
                2ffd2f4e-29d6-4a62-8d60-284120a97e67
                Copyright ©2011 Li et al; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 31 January 2011
                : 18 November 2011
                Categories
                Methodology Article

                Bioinformatics & Computational biology
                Bioinformatics & Computational biology

                Comments

                Comment on this article