44
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Tunable mid-infrared coherent perfect absorption in a graphene meta-surface

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Graphene has drawn considerable attention due to its intriguing properties in photonics and optoelectronics. However, its interaction with light is normally rather weak. Meta-surfaces, artificial structures with single planar function-layers, have demonstrated exotic performances in boosting light-matter interactions, e.g., for absorption enhancement. Graphene based high efficiency absorber is desirable for its potential applications in optical detections and signal modulations. Here we exploit graphene nanoribbons based meta-surface to realize coherent perfect absorption (CPA) in the mid-infrared regime. It was shown that quasi-CPA frequencies, at which CPA can be demonstrated with proper phase modulations, exist for the grapheme meta-surface with strong resonant behaviors. The CPA can be tuned substantially by merging the geometric design of the meta-surface and the electrical tunability of graphene. Furthermore, we found that the graphene nanoribbon meta-surface based CPA is realizable with experimentally achievable graphene sample.

          Related collections

          Most cited references24

          • Record: found
          • Abstract: found
          • Article: not found

          Fine structure constant defines visual transparency of graphene.

          There are few phenomena in condensed matter physics that are defined only by the fundamental constants and do not depend on material parameters. Examples are the resistivity quantum, h/e2 (h is Planck's constant and e the electron charge), that appears in a variety of transport experiments and the magnetic flux quantum, h/e, playing an important role in the physics of superconductivity. By and large, sophisticated facilities and special measurement conditions are required to observe any of these phenomena. We show that the opacity of suspended graphene is defined solely by the fine structure constant, a = e2/hc feminine 1/137 (where c is the speed of light), the parameter that describes coupling between light and relativistic electrons and that is traditionally associated with quantum electrodynamics rather than materials science. Despite being only one atom thick, graphene is found to absorb a significant (pa = 2.3%) fraction of incident white light, a consequence of graphene's unique electronic structure.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Metamaterials and negative refractive index.

            Recently, artificially constructed metamaterials have become of considerable interest, because these materials can exhibit electromagnetic characteristics unlike those of any conventional materials. Artificial magnetism and negative refractive index are two specific types of behavior that have been demonstrated over the past few years, illustrating the new physics and new applications possible when we expand our view as to what constitutes a material. In this review, we describe recent advances in metamaterials research and discuss the potential that these materials may hold for realizing new and seemingly exotic electromagnetic phenomena.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Graphene plasmonics for tunable terahertz metamaterials.

              Plasmons describe collective oscillations of electrons. They have a fundamental role in the dynamic responses of electron systems and form the basis of research into optical metamaterials. Plasmons of two-dimensional massless electrons, as present in graphene, show unusual behaviour that enables new tunable plasmonic metamaterials and, potentially, optoelectronic applications in the terahertz frequency range. Here we explore plasmon excitations in engineered graphene micro-ribbon arrays. We demonstrate that graphene plasmon resonances can be tuned over a broad terahertz frequency range by changing micro-ribbon width and in situ electrostatic doping. The ribbon width and carrier doping dependences of graphene plasmon frequency demonstrate power-law behaviour characteristic of two-dimensional massless Dirac electrons. The plasmon resonances have remarkably large oscillator strengths, resulting in prominent room-temperature optical absorption peaks. In comparison, plasmon absorption in a conventional two-dimensional electron gas was observed only at 4.2 K (refs 13, 14). The results represent a first look at light-plasmon coupling in graphene and point to potential graphene-based terahertz metamaterials.
                Bookmark

                Author and article information

                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group
                2045-2322
                24 September 2015
                2015
                : 5
                : 13956
                Affiliations
                [1 ]Key Laboratory of Space Applied Physics and Chemistry, Ministry of Education and Department of Applied Physics, School of Science, Northwestern Polytechnical University , Xi’an 710129, China
                [2 ]Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences , Beijing 100190, China
                [3 ]State Key Laboratory of Tribology, Department of Mechanical Engineering, Tsinghua University , Beijing 100084, China
                [4 ]Key Laboratory of Advanced Micro-structure Materials (MOE) and School of Physics Science and Engineering, Tongji University , Shanghai 200092, China
                Author notes
                Article
                srep13956
                10.1038/srep13956
                4585855
                26400371
                3017ce43-b3c9-4cc7-9215-0712fa129397
                Copyright © 2015, Macmillan Publishers Limited

                This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

                History
                : 01 June 2015
                : 13 August 2015
                Categories
                Article

                Uncategorized
                Uncategorized

                Comments

                Comment on this article