45
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The SV40 Late Protein VP4 Is a Viroporin that Forms Pores to Disrupt Membranes for Viral Release

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Nonenveloped viruses are generally released by the timely lysis of the host cell by a poorly understood process. For the nonenveloped virus SV40, virions assemble in the nucleus and then must be released from the host cell without being encapsulated by cellular membranes. This process appears to involve the well-controlled insertion of viral proteins into host cellular membranes rendering them permeable to large molecules. VP4 is a newly identified SV40 gene product that is expressed at late times during the viral life cycle that corresponds to the time of cell lysis. To investigate the role of this late expressed protein in viral release, water-soluble VP4 was expressed and purified as a GST fusion protein from bacteria. Purified VP4 was found to efficiently bind biological membranes and support their disruption. VP4 perforated membranes by directly interacting with the membrane bilayer as demonstrated by flotation assays and the release of fluorescent markers encapsulated into large unilamellar vesicles or liposomes. The central hydrophobic domain of VP4 was essential for membrane binding and disruption. VP4 displayed a preference for membranes comprised of lipids that replicated the composition of the plasma membranes over that of nuclear membranes. Phosphatidylethanolamine, a lipid found at high levels in bacterial membranes, was inhibitory against the membrane perforation activity of VP4. The disruption of membranes by VP4 involved the formation of pores of ∼3 nm inner diameter in mammalian cells including permissive SV40 host cells. Altogether, these results support a central role of VP4 acting as a viroporin in the perforation of cellular membranes to trigger SV40 viral release.

          Author Summary

          Viruses exploit host cells for their propagation. Once an adequate number of viral particles have been assembled within the cell through the aid of cellular machinery of the host cell, the virus must be released from the cell for the virus to spread. For nonenveloped viruses or viruses that are solely encapsulated by a protein shell, this step most commonly involves the perforation of cellular membranes resulting in the lysis or death of the host cell. The mechanism for how this key terminal step in the viral life cycle is performed is poorly understood. We demonstrated that for the model nonenveloped virus SV40, the newly discovered virally encoded protein, termed VP4, perforates membranes by forming pores with a diameter of ∼3 nm in host cell membranes. While these pores are not of a sufficient size to provide a conduit that permits the movement of the virus through the membrane, they support membrane destabilization that leads to the disintegration of the membrane of the host cell and viral release.

          Related collections

          Most cited references39

          • Record: found
          • Abstract: found
          • Article: not found

          Calcium signaling.

          Calcium ions (Ca(2+)) impact nearly every aspect of cellular life. This review examines the principles of Ca(2+) signaling, from changes in protein conformations driven by Ca(2+) to the mechanisms that control Ca(2+) levels in the cytoplasm and organelles. Also discussed is the highly localized nature of Ca(2+)-mediated signal transduction and its specific roles in excitability, exocytosis, motility, apoptosis, and transcription.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Virus Entry: Open Sesame

            Detailed information about the replication cycle of viruses and their interactions with host organisms is required to develop strategies to stop them. Cell biology studies, live-cell imaging, and systems biology have started to illuminate the multiple and subtly different pathways that animal viruses use to enter host cells. These insights are revolutionizing our understanding of endocytosis and the movement of vesicles within cells. In addition, such insights reveal new targets for attacking viruses before they can usurp the host-cell machinery for replication.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Membrane-protein topology.

              In the world of membrane proteins, topology defines an important halfway house between the amino-acid sequence and the fully folded three-dimensional structure. Although the concept of membrane-protein topology dates back at least 30 years, recent advances in the field of translocon-mediated membrane-protein assembly, proteome-wide studies of membrane-protein topology and an exponentially growing number of high-resolution membrane-protein structures have given us a deeper understanding of how topology is determined and of how it evolves.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Pathog
                plos
                plospath
                PLoS Pathogens
                Public Library of Science (San Francisco, USA )
                1553-7366
                1553-7374
                June 2011
                June 2011
                30 June 2011
                : 7
                : 6
                : e1002116
                Affiliations
                [1]Department of Biochemistry and Molecular Biology, Program in Molecular and Cellular Biology, University of Massachusetts, Amherst, Massachusetts, United States of America
                Cornell University, United States of America
                Author notes

                Conceived and designed the experiments: SR KMG FBR APH DNH. Performed the experiments: SR KMG FBR. Analyzed the data: SR KMG FBR APH DNH. Contributed reagents/materials/analysis tools: SR KMG FBR APH DNH. Wrote the paper: SR KMG FBR APH DNH.

                Article
                PPATHOGENS-D-10-00477
                10.1371/journal.ppat.1002116
                3128117
                21738474
                301bbc66-72d9-4c7d-b74b-636a779fdb45
                Raghava et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 6 December 2010
                : 26 April 2011
                Page count
                Pages: 15
                Categories
                Research Article
                Biology

                Infectious disease & Microbiology
                Infectious disease & Microbiology

                Comments

                Comment on this article