51
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Opposing Regulation of PROX1 by Interleukin-3 Receptor and NOTCH Directs Differential Host Cell Fate Reprogramming by Kaposi Sarcoma Herpes Virus

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Lymphatic endothelial cells (LECs) are differentiated from blood vascular endothelial cells (BECs) during embryogenesis and this physiological cell fate specification is controlled by PROX1, the master regulator for lymphatic development. When Kaposi sarcoma herpes virus (KSHV) infects host cells, it activates the otherwise silenced embryonic endothelial differentiation program and reprograms their cell fates. Interestingly, previous studies demonstrated that KSHV drives BECs to acquire a partial lymphatic phenotype by upregulating PROX1 (forward reprogramming), but stimulates LECs to regain some BEC-signature genes by downregulating PROX1 (reverse reprogramming). Despite the significance of this KSHV-induced bidirectional cell fate reprogramming in KS pathogenesis, its underlying molecular mechanism remains undefined. Here, we report that IL3 receptor alpha (IL3Rα) and NOTCH play integral roles in the host cell type-specific regulation of PROX1 by KSHV. In BECs, KSHV upregulates IL3Rα and phosphorylates STAT5, which binds and activates the PROX1 promoter. In LECs, however, PROX1 was rather downregulated by KSHV-induced NOTCH signal via HEY1, which binds and represses the PROX1 promoter. Moreover, PROX1 was found to be required to maintain HEY1 expression in LECs, establishing a reciprocal regulation between PROX1 and HEY1. Upon co-activation of IL3Rα and NOTCH, PROX1 was upregulated in BECs, but downregulated in LECs. Together, our study provides the molecular mechanism underlying the cell type-specific endothelial fate reprogramming by KSHV.

          Author Summary

          Kaposi's sarcoma (KS) is one of the most common neoplasms in HIV-positive individuals and organ transplant recipients. KS-associated herpes virus (KSHV), also known as human herpes virus (HHV)-8, has been identified as the causative agent and infects endothelial cells to form KS. Importantly, we and others have discovered that when KSHV infects endothelial cells of blood vessels, it reprograms host cells to resemble endothelial cells in lymphatic vessels. On the other hand, when KSHV infects endothelial cells in lymphatic vessels, the virus directs the host cells to partially obtain the phenotypes of blood vessel endothelial cells. These host cell reprogramming represent abnormal pathological processes, which are not as complete as the physiological process occurring during embryonic development. Currently, it is not clear how and why this cancer causing virus modifies the fate of its host cells. In this study, we aimed to dissect the molecular mechanism underlying the virus-induced host cell fate reprogramming and found two important cellular signaling pathways, interleukin-3 and Notch, playing key roles in the pathological events. Our current study provides a better understanding of KS tumorigenesis with a potential implication in a new KS therapy.

          Related collections

          Most cited references43

          • Record: found
          • Abstract: found
          • Article: not found

          Identification of herpesvirus-like DNA sequences in AIDS-associated Kaposi's sarcoma.

          Representational difference analysis was used to isolate unique sequences present in more than 90 percent of Kaposi's sarcoma (KS) tissues obtained from patients with acquired immunodeficiency syndrome (AIDS). These sequences were not present in tissue DNA from non-AIDS patients, but were present in 15 percent of non-KS tissue DNA samples from AIDS patients. The sequences are homologous to, but distinct from, capsid and tegument protein genes of the Gammaherpesvirinae, herpesvirus saimiri and Epstein-Barr virus. These KS-associated herpesvirus-like (KSHV) sequences appear to define a new human herpesvirus.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A simplified system for generating recombinant adenoviruses.

            Recombinant adenoviruses provide a versatile system for gene expression studies and therapeutic applications. We report herein a strategy that simplifies the generation and production of such viruses. A recombinant adenoviral plasmid is generated with a minimum of enzymatic manipulations, using homologous recombination in bacteria rather than in eukaryotic cells. After transfections of such plasmids into a mammalian packaging cell line, viral production is conveniently followed with the aid of green fluorescent protein, encoded by a gene incorporated into the viral backbone. Homogeneous viruses can be obtained from this procedure without plaque purification. This system should expedite the process of generating and testing recombinant adenoviruses for a variety of purposes.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              HES and HERP families: multiple effectors of the Notch signaling pathway.

              Notch signaling dictates cell fate and critically influences cell proliferation, differentiation, and apoptosis in metazoans. Multiple factors at each step-ligands, receptors, signal transducers and effectors-play critical roles in executing the pleiotropic effects of Notch signaling. Ligand-binding results in proteolytic cleavage of Notch receptors to release the signal-transducing Notch intracellular domain (NICD). NICD migrates into the nucleus and associates with the nuclear proteins of the RBP-Jkappa family (also known as CSL or CBF1/Su(H)/Lag-1). RBP-Jkappa, when complexed with NICD, acts as a transcriptional activator, and the RBP-Jkappa-NICD complex activates expression of primary target genes of Notch signaling such as the HES and enhancer of split [E(spl)] families. HES/E(spl) is a basic helix-loop-helix (bHLH) type of transcriptional repressor, and suppresses expression of downstream target genes such as tissue-specific transcriptional activators. Thus, HES/E(spl) directly affects cell fate decisions as a primary Notch effector. HES/E(spl) had been the only known effector of Notch signaling until a recent discovery of a related but distinct bHLH protein family, termed HERP (HES-related repressor protein, also called Hey/Hesr/HRT/CHF/gridlock). In this review, we summarize the recent data supporting the idea of HERP being a new Notch effector, and provide an overview of the similarities and differences between HES and HERP in their biochemical properties as well as their tissue distribution. One key observation derived from identification of HERP is that HES and HERP form a heterodimer and cooperate for transcriptional repression. The identification of the HERP family as a Notch effector that cooperates with HES/E(spl) family has opened a new avenue to our understanding of the Notch signaling pathway. Copyright 2003 Wiley-Liss, Inc.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Pathog
                PLoS Pathog
                plos
                plospath
                PLoS Pathogens
                Public Library of Science (San Francisco, USA )
                1553-7366
                1553-7374
                June 2012
                June 2012
                14 June 2012
                : 8
                : 6
                : e1002770
                Affiliations
                [1 ]Department of Surgery, Department of Biochemistry and Molecular Biology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
                [2 ]Division of Pediatric Urology, Children's Hospital Los Angeles and University of Southern California Keck School of Medicine, Los Angeles, California, United States of America
                University of North Carolina at Chapel Hill, United States of America
                Author notes

                Conceived and designed the experiments: JY HNL IC DC HKC KEK SL BA JK EP YSL YSM NYK YKH. Performed the experiments: JY HNL IC DC HKC KEK SL BA JK EP YSL YSM NYK. Analyzed the data: JY HNL IC DC YKH. Contributed reagents/materials/analysis tools: CJK. Wrote the paper: YKH.

                Article
                PPATHOGENS-D-11-02864
                10.1371/journal.ppat.1002770
                3375311
                22719258
                30257cc6-0e3d-4cda-85a0-68db7e3f3277
                Yoo et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 24 December 2011
                : 8 May 2012
                Page count
                Pages: 13
                Categories
                Research Article
                Biology
                Microbiology
                Host-Pathogen Interaction
                Virology
                Molecular Cell Biology
                Cellular Types
                Endothelial Cells
                Gene Expression
                DNA transcription
                Signal Transduction
                Mechanisms of Signal Transduction
                Feeback Regulation
                Medicine
                Oncology
                Cancers and Neoplasms
                Bone and Soft Tissue Sarcomas
                Kaposi Sarcoma

                Infectious disease & Microbiology
                Infectious disease & Microbiology

                Comments

                Comment on this article