17
views
0
recommends
+1 Recommend
2 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Targeting SARS-COV-2 non-structural protein 16: a virtual drug repurposing study

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Non-Structural Protein 16 (nsp-16), a viral RNA methyltransferase (MTase), is one of the highly viable targets for drug discovery of coronaviruses including SARS-CoV-2. In this study, drug discovery of SARS-CoV-2 nsp-16 has been performed by a virtual drug repurposing approach. First, drug shape-based screening (among FDA approved drugs) with a known template of MTase inhibitor, sinefungin was done and best compounds with high similarity scores were selected. In addition to the selected compounds, 4 nucleoside analogs of anti-viral (Raltgravir, Maraviroc and Favipiravir) and anti-inflammatory (Prednisolone) drugs were selected for further investigations. Then, binding energies and interaction modes were found by molecular docking approaches and compouds with lower energy were selected for further investigation. After that, Molecular dynamics (MD) simulation was carried to test the potential selected compounds in a realistic environment. The results showed that Raltegravir and Maraviroc among other compounds can bind strongly to the active site of the protein compared to sinefungin, and can be potential candidates to inhibit NSP-16. Also, the MD simulation results suggested that the Maraviroc and Raltegravir are more effective drug candidates than Sinefungin for inhibiting the enzyme. It is concluded that Raltegravir and Maraviroc which may be used in the treatment of COVID-19 after Invitro and invivo studies and clinical trial for final confirmation of drug effectiveness.

          Communicated by Ramaswamy H. Sarma

          Related collections

          Most cited references51

          • Record: found
          • Abstract: found
          • Article: not found

          A Trial of Lopinavir–Ritonavir in Adults Hospitalized with Severe Covid-19

          Abstract Background No therapeutics have yet been proven effective for the treatment of severe illness caused by SARS-CoV-2. Methods We conducted a randomized, controlled, open-label trial involving hospitalized adult patients with confirmed SARS-CoV-2 infection, which causes the respiratory illness Covid-19, and an oxygen saturation (Sao 2) of 94% or less while they were breathing ambient air or a ratio of the partial pressure of oxygen (Pao 2) to the fraction of inspired oxygen (Fio 2) of less than 300 mm Hg. Patients were randomly assigned in a 1:1 ratio to receive either lopinavir–ritonavir (400 mg and 100 mg, respectively) twice a day for 14 days, in addition to standard care, or standard care alone. The primary end point was the time to clinical improvement, defined as the time from randomization to either an improvement of two points on a seven-category ordinal scale or discharge from the hospital, whichever came first. Results A total of 199 patients with laboratory-confirmed SARS-CoV-2 infection underwent randomization; 99 were assigned to the lopinavir–ritonavir group, and 100 to the standard-care group. Treatment with lopinavir–ritonavir was not associated with a difference from standard care in the time to clinical improvement (hazard ratio for clinical improvement, 1.24; 95% confidence interval [CI], 0.90 to 1.72). Mortality at 28 days was similar in the lopinavir–ritonavir group and the standard-care group (19.2% vs. 25.0%; difference, −5.8 percentage points; 95% CI, −17.3 to 5.7). The percentages of patients with detectable viral RNA at various time points were similar. In a modified intention-to-treat analysis, lopinavir–ritonavir led to a median time to clinical improvement that was shorter by 1 day than that observed with standard care (hazard ratio, 1.39; 95% CI, 1.00 to 1.91). Gastrointestinal adverse events were more common in the lopinavir–ritonavir group, but serious adverse events were more common in the standard-care group. Lopinavir–ritonavir treatment was stopped early in 13 patients (13.8%) because of adverse events. Conclusions In hospitalized adult patients with severe Covid-19, no benefit was observed with lopinavir–ritonavir treatment beyond standard care. Future trials in patients with severe illness may help to confirm or exclude the possibility of a treatment benefit. (Funded by Major Projects of National Science and Technology on New Drug Creation and Development and others; Chinese Clinical Trial Register number, ChiCTR2000029308.)
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and coronavirus disease-2019 (COVID-19): The epidemic and the challenges

            Highlights • Emergence of 2019 novel coronavirus (2019-nCoV) in China has caused a large global outbreak and major public health issue. • At 9 February 2020, data from the WHO has shown >37 000 confirmed cases in 28 countries (>99% of cases detected in China). • 2019-nCoV is spread by human-to-human transmission via droplets or direct contact. • Infection estimated to have an incubation period of 2–14 days and a basic reproduction number of 2.24–3.58. • Controlling infection to prevent spread of the 2019-nCoV is the primary intervention being used.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Analysis of therapeutic targets for SARS-CoV-2 and discovery of potential drugs by computational methods

              SARS-CoV-2 has caused tens of thousands of infections and more than one thousand deaths. There are currently no registered therapies for treating coronavirus infections. Because of time consuming process of new drug development, drug repositioning may be the only solution to the epidemic of sudden infectious diseases. We systematically analyzed all the proteins encoded by SARS-CoV-2 genes, compared them with proteins from other coronaviruses, predicted their structures, and built 19 structures that could be done by homology modeling. By performing target-based virtual ligand screening, a total of 21 targets (including two human targets) were screened against compound libraries including ZINC drug database and our own database of natural products. Structure and screening results of important targets such as 3-chymotrypsin-like protease (3CLpro), Spike, RNA-dependent RNA polymerase (RdRp), and papain like protease (PLpro) were discussed in detail. In addition, a database of 78 commonly used anti-viral drugs including those currently on the market and undergoing clinical trials for SARS-CoV-2 was constructed. Possible targets of these compounds and potential drugs acting on a certain target were predicted. This study will provide new lead compounds and targets for further in vitro and in vivo studies of SARS-CoV-2, new insights for those drugs currently ongoing clinical studies, and also possible new strategies for drug repositioning to treat SARS-CoV-2 infections.
                Bookmark

                Author and article information

                Journal
                J Biomol Struct Dyn
                J. Biomol. Struct. Dyn
                TBSD
                tbsd20
                Journal of Biomolecular Structure & Dynamics
                Taylor & Francis
                0739-1102
                1538-0254
                2020
                23 June 2020
                : 1-14
                Affiliations
                [a ]Department of Chemistry, Gorgan Branch, Islamic Azad University , Gorgan, Iran;
                [b ]Nano Drug Delivery Research Center, Health Technology Institute, Kermanshah University of Medical Sciences , Kermanshah, Iran;
                [c ]School of Medicine, Jahrom University of Medical Science , Jahrom, Iran;
                [d ]Department of Biology, Gorgan Branch, Islamic Azad University , Gorgan, Iran;
                [e ]Department of Biology, Jahrom Branch, Islamic Azad University , Jahrom, Iran
                Author notes
                CONTACT Samaneh Zolghadri szjahromi@ 123456yahoo.com Department of Biology, Jahrom Branch, Islamic Azad University , Jahrom, Iran;
                Rahim Raoofi Sarahim1531@ 123456gmail.com School of Medicine, Jahrom University of Medical Science , Jahrom, Iran
                Article
                1779133
                10.1080/07391102.2020.1779133
                7332864
                32573355
                30565a78-1205-4961-ab60-f8e259d68b5f
                © 2020 Informa UK Limited, trading as Taylor & Francis Group
                History
                : 18 May 2020
                : 02 June 2020
                Page count
                Figures: 5, Tables: 4, Pages: 14, Words: 5873
                Categories
                Research Article

                sars-cov-2,drug repurposing,molecular docking,molecular dynamics simulation

                Comments

                Comment on this article