45
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Chitosan and its antimicrobial potential – a critical literature survey

      review-article
      * ,
      Microbial biotechnology
      Blackwell Publishing Ltd

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Summary

          Chitosan, an aminopolysaccharide biopolymer, has a unique chemical structure as a linear polycation with a high charge density, reactive hydroxyl and amino groups as well as extensive hydrogen bonding. It displays excellent biocompatibility, physical stability and processability. The term ‘chitosan’ describes a heterogenous group of polymers combining a group of physicochemical and biological characteristics, which allow for a wide scope of applications that are both fascinating and as yet uncharted. The increased awareness of the potentials and industrial value of this biopolymer lead to its utilization in many applications of technical interest, and increasingly in the biomedical arena. Although not primarily used as an antimicrobial agent, its utility as an ingredient in both food and pharmaceutical formulations lately gained more interest, when a scientific understanding of at least some of the pharmacological activities of this versatile carbohydrate began to evolve. However, understanding the various factors that affect its antimicrobial activity has become a key issue for a better usage and a more efficient optimization of chitosan formulations. Moreover, the use of chitosan in antimicrobial systems should be based on sufficient knowledge of the complex mechanisms of its antimicrobial mode of action, which in turn would help to arrive at an appreciation of its entire antimicrobial potential.

          Related collections

          Most cited references106

          • Record: found
          • Abstract: not found
          • Article: not found

          A review of chitin and chitosan applications

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Low-cost adsorbents for heavy metals uptake from contaminated water: a review.

            In this article, the technical feasibility of various low-cost adsorbents for heavy metal removal from contaminated water has been reviewed. Instead of using commercial activated carbon, researchers have worked on inexpensive materials, such as chitosan, zeolites, and other adsorbents, which have high adsorption capacity and are locally available. The results of their removal performance are compared to that of activated carbon and are presented in this study. It is evident from our literature survey of about 100 papers that low-cost adsorbents have demonstrated outstanding removal capabilities for certain metal ions as compared to activated carbon. Adsorbents that stand out for high adsorption capacities are chitosan (815, 273, 250 mg/g of Hg(2+), Cr(6+), and Cd(2+), respectively), zeolites (175 and 137 mg/g of Pb(2+) and Cd(2+), respectively), waste slurry (1030, 560, 540 mg/g of Pb(2+), Hg(2+), and Cr(6+), respectively), and lignin (1865 mg/g of Pb(2+)). These adsorbents are suitable for inorganic effluent treatment containing the metal ions mentioned previously. It is important to note that the adsorption capacities of the adsorbents presented in this paper vary, depending on the characteristics of the individual adsorbent, the extent of chemical modifications, and the concentration of adsorbate.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Staphylococcus aureus Resistance to Human Defensins and Evasion of Neutrophil Killing via the Novel Virulence Factor Mprf Is Based on Modification of Membrane Lipids with l-Lysine

              Defensins, antimicrobial peptides of the innate immune system, protect human mucosal epithelia and skin against microbial infections and are produced in large amounts by neutrophils. The bacterial pathogen Staphylococcus aureus is insensitive to defensins by virtue of an unknown resistance mechanism. We describe a novel staphylococcal gene, mprF, which determines resistance to several host defense peptides such as defensins and protegrins. An mprF mutant strain was killed considerably faster by human neutrophils and exhibited attenuated virulence in mice, indicating a key role for defensin resistance in the pathogenicity of S. aureus. Analysis of membrane lipids demonstrated that the mprF mutant no longer modifies phosphatidylglycerol with l-lysine. As this unusual modification leads to a reduced negative charge of the membrane surface, MprF-mediated peptide resistance is most likely based on repulsion of the cationic peptides. Accordingly, inactivation of mprF led to increased binding of antimicrobial peptides by the bacteria. MprF has no similarity with genes of known function, but related genes were identified in the genomes of several pathogens including Mycobacterium tuberculosis, Pseudomonas aeruginosa, and Enterococcus faecalis. MprF thus constitutes a novel virulence factor, which may be of general relevance for bacterial pathogens and represents a new target for attacking multidrug resistant bacteria.
                Bookmark

                Author and article information

                Journal
                Microb Biotechnol
                Microb Biotechnol
                MBT
                Microbial biotechnology
                Blackwell Publishing Ltd (Oxford, UK )
                1751-7915
                1751-7915
                March 2009
                18 February 2009
                : 2
                : 2
                : 186-201
                Affiliations
                Institute for Medical Microbiology, Immunology and Parasitology (IMMIP), Pharmaceutical Microbiology Unit, University of Bonn, D‐53115 Bonn, Germany.
                Author notes
                [†]

                Present address: Pharmaceutical Microbiology Department, Faculty of Pharmacy, Alexandria University, 1st El‐Khartoum Square, Azarita, PO Box 21521 Elmesalla, Alexandria, Egypt.

                *E‐mail dina_raafat@ 123456yahoo.com ; Tel. (+20) 348 71351; Fax (+20) 348 73273.
                Article
                10.1111/j.1751-7915.2008.00080.x
                3815839
                21261913
                305f6b6f-8aa5-440d-b0b4-4d405f80a6bd
                © 2009 The Authors. Journal compilation © 2009 Society for Applied Microbiology and Blackwell Publishing Ltd
                History
                : 04 October 2008
                : 02 December 2008
                : 08 December 2008
                Categories
                Minireviews

                Biotechnology
                Biotechnology

                Comments

                Comment on this article