28
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Dl-3-n-butylphthalide protects the heart against ischemic injury and H9c2 cardiomyoblasts against oxidative stress: involvement of mitochondrial function and biogenesis

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Myocardial infarction (MI) is an acute and fatal condition that threatens human health. Dl-3-n-butylphthalide (NBP) has been used for the treatment of acute ischemic stroke. Mitochondria may play a protective role in MI injury. However, there are few reports on the cardioprotective effect of NBP or the potential mitochondrial mechanism for the NBP-induced protection against cardiac ischemia injury. We investigated the therapeutic effects of NBP in an in vivo MI model and an in vitro oxidative stress model, as well as the potential mitochondrial mechanism.

          Methods

          This study comprised two different experiments. The aim of experiment 1 was to determine the protective effects of NBP on MI and the underlying mechanisms in vivo. In part 1, myocardial infarct size was measured by staining with 2,3,5-triphenyltetrazoliumchloride (TTC). Myocardial enzymes and mitochondrial enzymes were assayed. The aim of experiment 2 was to investigate the role of NBP in H 2O 2-induced myocardial ischemic injury in H9c2 cells and to determine the potential mechanism. In part 2, H9c2 cell viability was evaluated. ROS levels, mitochondrial morphology, and mitochondrial membrane potential of H9c2 cells were measured. ATP levels were evaluated using an assay kit; mitochondrial DNA (mtDNA), the expressions of NRF-1 and TFAM, and mitochondrial biogenesis factors were determined.

          Results

          NBP treatment significantly reduced the infarct ratio, as observed by TTC staining, decreased serum myocardial enzymes in MI, and restored heart mitochondrial enzymes (isocitrate dehydrogenase (ICDH), succinate dehydrogenase (SDH), malate dehydrogenase (MDH), and a-ketoglutarate dehydrogenase (a-KGDH) activities after MI. Moreover, in in vitro studies, NBP significantly increased the viability of H9c2 cells in a dose-dependent manner, reduced cell apoptosis, protected mitochondrial functions, elevated the cellular ATP levels, and promoted H 2O 2-induced mitochondrial biogenesis in H9c2 cardiomyoblasts.

          Conclusion

          Collectively, the results from both the in vivo and in vitro experiments suggested that NBP exerted a cardioprotective effect on cardiac ischemic injury via the regulation of mitochondrial function and biogenesis.

          Related collections

          Most cited references41

          • Record: found
          • Abstract: found
          • Article: not found

          New insights into the role of mitochondria in aging: mitochondrial dynamics and more.

          A decline in mitochondrial function plays a key role in the aging process and increases the incidence of age-related disorders. A deeper understanding of the intricate nature of mitochondrial dynamics, which is described as the balance between mitochondrial fusion and fission, has revealed that functional and structural alterations in mitochondrial morphology are important factors in several key pathologies associated with aging. Indeed, a recent wave of studies has demonstrated the pleiotropic role of fusion and fission proteins in numerous cellular processes, including mitochondrial metabolism, redox signaling, the maintenance of mitochondrial DNA and cell death. Additionally, mitochondrial fusion and fission, together with autophagy, have been proposed to form a quality-maintenance mechanism that facilitates the removal of damaged mitochondria from the cell, a process that is particularly important to forestall aging. Thus, dysfunctional regulation of mitochondrial dynamics might be one of the intrinsic causes of mitochondrial dysfunction, which contributes to oxidative stress and cell death during the aging process. In this Commentary, we discuss recent studies that have converged at a consensus regarding the involvement of mitochondrial dynamics in key cellular processes, and introduce a possible link between abnormal mitochondrial dynamics and aging.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Mitochondria and neuroplasticity

            The production of neurons from neural progenitor cells, the growth of axons and dendrites and the formation and reorganization of synapses are examples of neuroplasticity. These processes are regulated by cell-autonomous and intercellular (paracrine and endocrine) programs that mediate responses of neural cells to environmental input. Mitochondria are highly mobile and move within and between subcellular compartments involved in neuroplasticity (synaptic terminals, dendrites, cell body and the axon). By generating energy (ATP and NAD+), and regulating subcellular Ca2+ and redox homoeostasis, mitochondria may play important roles in controlling fundamental processes in neuroplasticity, including neural differentiation, neurite outgrowth, neurotransmitter release and dendritic remodelling. Particularly intriguing is emerging data suggesting that mitochondria emit molecular signals (e.g. reactive oxygen species, proteins and lipid mediators) that can act locally or travel to distant targets including the nucleus. Disturbances in mitochondrial functions and signalling may play roles in impaired neuroplasticity and neuronal degeneration in Alzheimer's disease, Parkinson's disease, psychiatric disorders and stroke.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Macrophage migration inhibitory factor stimulates AMP-activated protein kinase in the ischaemic heart.

              Understanding cellular response to environmental stress has broad implications for human disease. AMP-activated protein kinase (AMPK) orchestrates the regulation of energy-generating and -consuming pathways, and protects the heart against ischaemic injury and apoptosis. A role for circulating hormones such as adiponectin and leptin in the activation of AMPK has received recent attention. Whether local autocrine and paracrine factors within target organs such as the heart modulate AMPK is unknown. Here we show that macrophage migration inhibitory factor (MIF), an upstream regulator of inflammation, is released in the ischaemic heart, where it stimulates AMPK activation through CD74, promotes glucose uptake and protects the heart during ischaemia-reperfusion injury. Germline deletion of the Mif gene impairs ischaemic AMPK signalling in the mouse heart. Human fibroblasts with a low-activity MIF promoter polymorphism have diminished MIF release and AMPK activation during hypoxia. Thus, MIF modulates the activation of the cardioprotective AMPK pathway during ischaemia, functionally linking inflammation and metabolism in the heart. We anticipate that genetic variation in MIF expression may impact on the response of the human heart to ischaemia by the AMPK pathway, and that diagnostic MIF genotyping might predict risk in patients with coronary artery disease.
                Bookmark

                Author and article information

                Contributors
                +8615200035958 , xiaochao_tian2009@126.com
                hwl19851007@126.com
                yanzhaox@126.com
                317521364@qq.com
                Journal
                J Biomed Sci
                J. Biomed. Sci
                Journal of Biomedical Science
                BioMed Central (London )
                1021-7770
                1423-0127
                15 June 2017
                15 June 2017
                2017
                : 24
                : 38
                Affiliations
                [1 ]ISNI 0000 0004 1804 3009, GRID grid.452702.6, Department of Cardiology, , The Second Hospital of Hebei Medical University, ; Shijiazhuang, Hebei 050000 People’s Republic of China
                [2 ]GRID grid.440208.a, Department of Neurology, , Hebei General Hospital, ; Shijiazhuang, Hebei 050000 China
                [3 ]ISNI 0000 0004 0369 153X, GRID grid.24696.3f, Department of Cardiology, Beijing Shijitan Hospital, , Capital Medical University, ; Beijing, 100038 China
                Article
                345
                10.1186/s12929-017-0345-9
                5471652
                28619102
                30604094-7af6-40f4-be02-1d43d5df94ff
                © The Author(s). 2017

                Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License ( http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

                History
                : 27 March 2017
                : 7 June 2017
                Categories
                Research
                Custom metadata
                © The Author(s) 2017

                Molecular medicine
                myocardial infarction,dl-3-n-butylphthalide,mitochondrial function,mitochondrial biogenesis

                Comments

                Comment on this article