12
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The Role of the Renin-Angiotensin System and Vitamin D in Keloid Disorder—A Review

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Keloid disorder (KD) is a fibroproliferative condition characterized by excessive dermal collagen deposition in response to wounding and/or inflammation of the skin. Despite intensive research, treatment for KD remains empirical and unsatisfactory. Activation of the renin-angiotensin system (RAS) leads to fibrosis in various organs through its direct effect and the resultant hypertension, and activation of the immune system. The observation of an increased incidence of KD in dark-skinned individuals who are predisposed to vitamin D deficiency (VDD) and hypertension, and the association of KD with hypertension and VDD, all of which are associated with an elevated activity of the RAS, provides clues to the pathogenesis of KD. There is increasing evidence implicating embryonic-like stem (ESC) cells that express ESC markers within keloid-associated lymphoid tissues (KALTs) in keloid lesions. These primitive cells express components of the RAS, cathepsins B, D, and G that constitute bypass loops of the RAS, and vitamin D receptor (VDR). This suggests that the RAS directly, and through signaling pathways that converge on the RAS, including VDR-mediated mechanisms and the immune system, may play a critical role in regulating the primitive population within the KALTs. This review discusses the role of the RAS, its relationship with hypertension, vitamin D, VDR, VDD, and the immune system that provide a microenvironmental niche in regulating the ESC-like cells within the KALTs. These ESC-like cells may be a novel therapeutic target for the treatment of this enigmatic and challenging condition, by modulating the RAS using inhibitors of the RAS and its bypass loops and convergent signaling pathways.

          Related collections

          Most cited references113

          • Record: found
          • Abstract: found
          • Article: not found

          The stem-cell niche as an entity of action.

          Stem-cell populations are established in 'niches'--specific anatomic locations that regulate how they participate in tissue generation, maintenance and repair. The niche saves stem cells from depletion, while protecting the host from over-exuberant stem-cell proliferation. It constitutes a basic unit of tissue physiology, integrating signals that mediate the balanced response of stem cells to the needs of organisms. Yet the niche may also induce pathologies by imposing aberrant function on stem cells or other targets. The interplay between stem cells and their niche creates the dynamic system necessary for sustaining tissues, and for the ultimate design of stem-cell therapeutics.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Stem cells and their niches.

            A constellation of intrinsic and extrinsic cellular mechanisms regulates the balance of self-renewal and differentiation in all stem cells. Stem cells, their progeny, and elements of their microenvironment make up an anatomical structure that coordinates normal homeostatic production of functional mature cells. Here we discuss the stem cell niche concept, highlight recent progress, and identify important unanswered questions. We focus on three mammalian stem cell systems where large numbers of mature cells must be continuously produced throughout adult life: intestinal epithelium, epidermal structures, and bone marrow.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Promoting tissue regeneration by modulating the immune system.

              The immune system plays a central role in tissue repair and regeneration. Indeed, the immune response to tissue injury is crucial in determining the speed and the outcome of the healing process, including the extent of scarring and the restoration of organ function. Therefore, controlling immune components via biomaterials and drug delivery systems is becoming an attractive approach in regenerative medicine, since therapies based on stem cells and growth factors have not yet proven to be broadly effective in the clinic. To integrate the immune system into regenerative strategies, one of the first challenges is to understand the precise functions of the different immune components during the tissue healing process. While remarkable progress has been made, the immune mechanisms involved are still elusive, and there is indication for both negative and positive roles depending on the tissue type or organ and life stage. It is well recognized that the innate immune response comprising danger signals, neutrophils and macrophages modulates tissue healing. In addition, it is becoming evident that the adaptive immune response, in particular T cell subset activities, plays a critical role. In this review, we first present an overview of the basic immune mechanisms involved in tissue repair and regeneration. Then, we highlight various approaches based on biomaterials and drug delivery systems that aim at modulating these mechanisms to limit fibrosis and promote regeneration. We propose that the next generation of regenerative therapies may evolve from typical biomaterial-, stem cell-, or growth factor-centric approaches to an immune-centric approach.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Surg
                Front Surg
                Front. Surg.
                Frontiers in Surgery
                Frontiers Media S.A.
                2296-875X
                26 November 2019
                2019
                : 6
                : 67
                Affiliations
                [1] 1Gillies McIndoe Research Institute , Wellington, New Zealand
                [2] 2Wellington Regional Plastic, Maxillofacial & Burns Unit, Hutt Hospital , Wellington, New Zealand
                Author notes

                Edited by: Jason K. F. Wong, University of Manchester, United Kingdom

                Reviewed by: Shirley Potter, National University of Ireland Galway, Ireland; Fatih Zor, Wake Forest School of Medicine, United States

                *Correspondence: Swee T. Tan swee.tan@ 123456gmri.org.nz

                This article was submitted to Reconstructive and Plastic Surgery, a section of the journal Frontiers in Surgery

                Article
                10.3389/fsurg.2019.00067
                6988818
                306107bc-91c4-4dd9-9316-f0cb5b3e71f5
                Copyright © 2019 Kilmister, Paterson, Brasch, Davis and Tan.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 14 July 2019
                : 13 November 2019
                Page count
                Figures: 4, Tables: 1, Equations: 0, References: 131, Pages: 12, Words: 9020
                Categories
                Surgery
                Review

                keloid disorder,keloid lesion,renin-angiotensin system,embryonic stem cells,vitamin d deficiency,keloid-associated lymphoid tissue,cathepsins,immune system

                Comments

                Comment on this article