20
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      PyTorch Geometric High Order: A Unified Library for High Order Graph Neural Network

      Preprint
      ,

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          We introduce PyTorch Geometric High Order (PyGHO), a library for High Order Graph Neural Networks (HOGNNs) that extends PyTorch Geometric (PyG). Unlike ordinary Message Passing Neural Networks (MPNNs) that exchange messages between nodes, HOGNNs, encompassing subgraph GNNs and k-WL GNNs, encode node tuples, a method previously lacking a standardized framework and often requiring complex coding. PyGHO's main objective is to provide an unified and user-friendly interface for various HOGNNs. It accomplishes this through streamlined data structures for node tuples, comprehensive data processing utilities, and a flexible suite of operators for high-order GNN methodologies. In this work, we present a detailed in-depth of PyGHO and compare HOGNNs implemented with PyGHO with their official implementation on real-world tasks. PyGHO achieves up to \(50\%\) acceleration and reduces the code needed for implementation by an order of magnitude. Our library is available at \url{https://github.com/GraphPKU/PygHO}.

          Related collections

          Author and article information

          Journal
          28 November 2023
          Article
          2311.16670
          30668e82-1f06-4f6c-8c49-079f67067b3b

          http://creativecommons.org/licenses/by/4.0/

          History
          Custom metadata
          cs.LG

          Artificial intelligence
          Artificial intelligence

          Comments

          Comment on this article