49
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      FDA-approved selective estrogen receptor modulators inhibit Ebola virus infection.

      Science translational medicine
      Animals, Cathepsins, metabolism, Cercopithecus aethiops, Clomiphene, pharmacology, therapeutic use, Disease Models, Animal, Dose-Response Relationship, Drug, Drug Approval, Ebolavirus, drug effects, physiology, Endosomes, Hemorrhagic Fever, Ebola, drug therapy, virology, Hep G2 Cells, Humans, Hydrogen-Ion Concentration, Mice, Mice, Inbred C57BL, Receptors, Estrogen, Selective Estrogen Receptor Modulators, Survival Analysis, Toremifene, United States, United States Food and Drug Administration, Vero Cells, Virion, Virus Internalization

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Ebola viruses remain a substantial threat to both civilian and military populations as bioweapons, during sporadic outbreaks, and from the possibility of accidental importation from endemic regions by infected individuals. Currently, no approved therapeutics exist to treat or prevent infection by Ebola viruses. Therefore, we performed an in vitro screen of Food and Drug Administration (FDA)- and ex-US-approved drugs and selected molecular probes to identify drugs with antiviral activity against the type species Zaire ebolavirus (EBOV). From this screen, we identified a set of selective estrogen receptor modulators (SERMs), including clomiphene and toremifene, which act as potent inhibitors of EBOV infection. Anti-EBOV activity was confirmed for both of these SERMs in an in vivo mouse infection model. This anti-EBOV activity occurred even in the absence of detectable estrogen receptor expression, and both SERMs inhibited virus entry after internalization, suggesting that clomiphene and toremifene are not working through classical pathways associated with the estrogen receptor. Instead, the response appeared to be an off-target effect where the compounds interfere with a step late in viral entry and likely affect the triggering of fusion. These data support the screening of readily available approved drugs to identify therapeutics for the Ebola viruses and other infectious diseases. The SERM compounds described in this report are an immediately actionable class of approved drugs that can be repurposed for treatment of filovirus infections.

          Related collections

          Most cited references32

          • Record: found
          • Abstract: found
          • Article: not found

          Role of endosomal cathepsins in entry mediated by the Ebola virus glycoprotein.

          Using chemical inhibitors and small interfering RNA (siRNA), we have confirmed roles for cathepsin B (CatB) and cathepsin L (CatL) in Ebola virus glycoprotein (GP)-mediated infection. Treatment of Ebola virus GP pseudovirions with CatB and CatL converts GP1 from a 130-kDa to a 19-kDa species. Virus with 19-kDa GP1 displays significantly enhanced infection and is largely resistant to the effects of the CatB inhibitor and siRNA, but it still requires a low-pH-dependent endosomal/lysosomal function. These and other results support a model in which CatB and CatL prime GP by generating a 19-kDa intermediate that can be acted upon by an as yet unidentified endosomal/lysosomal enzyme to trigger fusion.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Epitopes involved in antibody-mediated protection from Ebola virus.

            To determine the ability of antibodies to provide protection from Ebola viruses, monoclonal antibodies (mAbs) to the Ebola glycoprotein were generated and evaluated for efficacy. We identified several protective mAbs directed toward five unique epitopes on Ebola glycoprotein. One of the epitopes is conserved among all Ebola viruses that are known to be pathogenic for humans. Some protective mAbs were also effective therapeutically when administered to mice 2 days after exposure to lethal Ebola virus. The identification of protective mAbs has important implications for developing vaccines and therapies for Ebola virus.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Ebola virus entry requires the host-programmed recognition of an intracellular receptor.

              Ebola and Marburg filoviruses cause deadly outbreaks of haemorrhagic fever. Despite considerable efforts, no essential cellular receptors for filovirus entry have been identified. We showed previously that Niemann-Pick C1 (NPC1), a lysosomal cholesterol transporter, is required for filovirus entry. Here, we demonstrate that NPC1 is a critical filovirus receptor. Human NPC1 fulfills a cardinal property of viral receptors: it confers susceptibility to filovirus infection when expressed in non-permissive reptilian cells. The second luminal domain of NPC1 binds directly and specifically to the viral glycoprotein, GP, and a synthetic single-pass membrane protein containing this domain has viral receptor activity. Purified NPC1 binds only to a cleaved form of GP that is generated within cells during entry, and only viruses containing cleaved GP can utilize a receptor retargeted to the cell surface. Our findings support a model in which GP cleavage by endosomal cysteine proteases unmasks the binding site for NPC1, and GP-NPC1 engagement within lysosomes promotes a late step in entry proximal to viral escape into the host cytoplasm. NPC1 is the first known viral receptor that recognizes its ligand within an intracellular compartment and not at the plasma membrane.
                Bookmark

                Author and article information

                Comments

                Comment on this article