+1 Recommend
0 collections
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Polychlorinated Biphenyl (PCB) Exposure and Diabetes: Results from the Anniston Community Health Survey


      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.


          Background: Polychlorinated biphenyls (PCBs) manufactured in Anniston, Alabama, from 1929 to 1971 caused significant environmental contamination. The Anniston population remains one of the most highly exposed in the world.

          Objectives: Reports of increased diabetes in PCB-exposed populations led us to examine possible associations in Anniston residents.

          Methods: Volunteers ( n = 774) from a cross-sectional study of randomly selected households and adults who completed the Anniston Community Health Survey also underwent measurements of height, weight, fasting glucose, lipid, and PCB congener levels and verification of medications. Odds ratios (ORs) and 95% confidence intervals (CIs) were calculated to assess the relationships between PCBs and diabetes, adjusting for diabetes risk factors. Participants with prediabetes were excluded from the logistic regression analyses.

          Results: Participants were 47% African American, 70% female, with a mean age of 54.8 years. The prevalence of diabetes was 27% in the study population, corresponding to an estimated prevalence of 16% for Anniston overall; the PCB body burden of 35 major congeners ranged from 0.11 to 170.42 ppb, wet weight. The adjusted OR comparing the prevalence of diabetes in the fifth versus first quintile of serum PCB was 2.78 (95% CI: 1.00, 7.73), with similar associations estimated for second through fourth quintiles. In participants < 55 years of age, the adjusted OR for diabetes for the highest versus lowest quintile was 4.78 (95% CI: 1.11, 20.6), whereas in those ≥ 55 years of age, we observed no significant associations with PCBs. Elevated diabetes prevalence was observed with a 1 SD increase in log PCB levels in women (OR = 1.52; 95% CI: 1.01, 2.28); a decreased prevalence was observed in men (OR = 0.68; 95% CI: 0.33, 1.41).

          Conclusions: We observed significant associations between elevated PCB levels and diabetes mostly due to associations in women and in individuals < 55 years of age.

          Related collections

          Most cited references37

          • Record: found
          • Abstract: found
          • Article: not found

          The 2005 World Health Organization reevaluation of human and Mammalian toxic equivalency factors for dioxins and dioxin-like compounds.

          In June 2005, a World Health Organization (WHO)-International Programme on Chemical Safety expert meeting was held in Geneva during which the toxic equivalency factors (TEFs) for dioxin-like compounds, including some polychlorinated biphenyls (PCBs), were reevaluated. For this reevaluation process, the refined TEF database recently published by Haws et al. (2006, Toxicol. Sci. 89, 4-30) was used as a starting point. Decisions about a TEF value were made based on a combination of unweighted relative effect potency (REP) distributions from this database, expert judgment, and point estimates. Previous TEFs were assigned in increments of 0.01, 0.05, 0.1, etc., but for this reevaluation, it was decided to use half order of magnitude increments on a logarithmic scale of 0.03, 0.1, 0.3, etc. Changes were decided by the expert panel for 2,3,4,7,8-pentachlorodibenzofuran (PeCDF) (TEF = 0.3), 1,2,3,7,8-pentachlorodibenzofuran (PeCDF) (TEF = 0.03), octachlorodibenzo-p-dioxin and octachlorodibenzofuran (TEFs = 0.0003), 3,4,4',5-tetrachlorbiphenyl (PCB 81) (TEF = 0.0003), 3,3',4,4',5,5'-hexachlorobiphenyl (PCB 169) (TEF = 0.03), and a single TEF value (0.00003) for all relevant mono-ortho-substituted PCBs. Additivity, an important prerequisite of the TEF concept was again confirmed by results from recent in vivo mixture studies. Some experimental evidence shows that non-dioxin-like aryl hydrocarbon receptor agonists/antagonists are able to impact the overall toxic potency of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and related compounds, and this needs to be investigated further. Certain individual and groups of compounds were identified for possible future inclusion in the TEF concept, including 3,4,4'-TCB (PCB 37), polybrominated dibenzo-p-dioxins and dibenzofurans, mixed polyhalogenated dibenzo-p-dioxins and dibenzofurans, polyhalogenated naphthalenes, and polybrominated biphenyls. Concern was expressed about direct application of the TEF/total toxic equivalency (TEQ) approach to abiotic matrices, such as soil, sediment, etc., for direct application in human risk assessment. This is problematic as the present TEF scheme and TEQ methodology are primarily intended for estimating exposure and risks via oral ingestion (e.g., by dietary intake). A number of future approaches to determine alternative or additional TEFs were also identified. These included the use of a probabilistic methodology to determine TEFs that better describe the associated levels of uncertainty and "systemic" TEFs for blood and adipose tissue and TEQ for body burden.
            • Record: found
            • Abstract: found
            • Article: not found

            A strong dose-response relation between serum concentrations of persistent organic pollutants and diabetes: results from the National Health and Examination Survey 1999-2002.

            Low-level exposure to some persistent organic pollutants (POPs) has recently become a focus because of their possible link with the risk of diabetes. Cross-sectional associations of the serum concentrations of POPs with diabetes prevalence were investigated in 2,016 adult participants in the National Health and Nutrition Examination Survey 1999-2002. Six POPs (2,2',4,4',5,5'-hexachlorobiphenyl, 1,2,3,4,6,7,8-heptachlorodibenzo-p-dioxin, 1,2,3,4,6,7,8,9-octachlorodibenzo-p-dioxin, oxychlordane, p,p'-dichlorodiphenyltrichloroethane, and trans-nonachlor) were selected, because they were detectable in >or=80% of participants. Compared with subjects with serum concentrations below the limit of detection, after adjustment for age, sex, race and ethnicity, poverty income ratio, BMI, and waist circumference, diabetes prevalence was strongly positively associated with lipid-adjusted serum concentrations of all six POPs. When the participants were classified according to the sum of category numbers of the six POPs, adjusted odds ratios were 1.0, 14.0, 14.7, 38.3, and 37.7 (P for trend < 0.001). The association was consistent in stratified analyses and stronger in younger participants, Mexican Americans, and obese individuals. There were striking dose-response relations between serum concentrations of six selected POPs and the prevalence of diabetes. The strong graded association could offer a compelling challenge to future epidemiologic and toxicological research.
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Low Dose Organochlorine Pesticides and Polychlorinated Biphenyls Predict Obesity, Dyslipidemia, and Insulin Resistance among People Free of Diabetes

              Background There is emerging evidence that background exposure to persistent organic pollutants (POPs) are important in the development of conditions predisposing to diabetes as well as of type 2 diabetes itself. We recently reported that low dose POPs predicted incident type 2 diabetes in a nested case-control study. The current study examined if low dose POPs predicted future adiposity, dyslipidemia, and insulin resistance among controls without diabetes in that study. Methodology/Principal Findings The 90 controls were diabetes-free during 20 years follow-up. They were a stratified random sample, enriched with overweight and obese persons. POPs measured in 1987-88 (year 2) sera included 8 organochlorine (OC) pesticides, 22 polychlorinated biphenyls (PCBs), and 1 polybrominated biphenyl (PBB). Body mass index (BMI), triglycerides, HDL-cholesterol, LDL-cholesterol, and homeostasis model assessment value for insulin resistance (HOMA–IR) were study outcomes at 2005-06 (year 20). The evolution of study outcomes during 18 years by categories of serum concentrations of POPs at year 2 was evaluated by adjusting for the baseline values of outcomes plus potential confounders. Parallel to prediction of type 2 diabetes, many statistically significant associations of POPs with dysmetabolic conditions appeared at low dose, forming inverted U-shaped dose-response relations. Among OC pesticides, p,p'-DDE most consistently predicted higher BMI, triglycerides, and HOMA-IR and lower HDL-cholesterol at year 20 after adjusting for baseline values. Oxychlordane, trans-nonachlor, and hexachlorobenzene also significantly predicted higher triglycerides. Persistent PCBs with ≥7 chlorides predicted higher BMI, triglycerides, and HOMA-IR and lower HDL-cholesterol at year 20 with similar dose-response curves. Conclusions/Significance Simultaneous exposure to various POPs in the general population may contribute to development of obesity, dyslipidemia, and insulin resistance, common precursors of type 2 diabetes and cardiovascular diseases. Although obesity is a primary cause of these metabolic abnormalities, POPs exposure may contribute to excess adiposity and other features of dysmetabolism.

                Author and article information

                Environ Health Perspect
                Environ. Health Perspect
                Environmental Health Perspectives
                National Institute of Environmental Health Sciences
                14 February 2012
                May 2012
                : 120
                : 5
                : 727-732
                [1 ]State University of New York Upstate Medical University, Syracuse, New York, USA
                [2 ]Department of Veterans Affairs Medical Center, Syracuse, New York, USA
                [3 ]University of California–Irvine, Irvine, California, USA
                [4 ]University of Alabama–Birmingham, Birmingham, Alabama, USA
                [5 ]Jacksonville State University, College of Nursing and Health Sciences, Jacksonville, Alabama, USA
                [6 ]Agency for Toxic Substances and Disease Registry, Atlanta, Georgia, USA
                Author notes
                Address correspondence to A.E. Silverstone, Department of Microbiology and Immunology, SUNY Upstate Medical University, 750 E. Adams St., Syracuse, NY 13210 USA. Telephone: (315) 464-5871. Fax: (315) 464-4417. E-mail: silversa@ 123456upstate.edu

                Other Consortium Steering Committee members: S. Baker (community representative), D.O. Carpenter [State University of New York (SUNY) Albany], J. Cash [formerly of Jacksonville State University (JSU)], H. Frumkin [formerly of the Centers for Disease Control and Prevention (CDC)/Agency for Toxic Substances and Disease Registry (ATSDR)], R. Johnson (University of Alabama–Tuscaloosa), M. Lavender (formerly at JSU), M. Michael [University of Alabama–Birmingham (UAB)], K. Moysich (Roswell Park Cancer Institute), J. Olson (SUNY Buffalo), and A. Percy (UAB).

                Copyright @ 2012

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                : 21 July 2011
                : 14 February 2012

                Public health
                diabetes,polychlorinated biphenyls (pcbs),epidemiology,pops
                Public health
                diabetes, polychlorinated biphenyls (pcbs), epidemiology, pops


                Comment on this article