Blog
About

  • Record: found
  • Abstract: found
  • Article: found
Is Open Access

Molecular Cytogenetic Diagnosis and Somatic Genome Variations

Read this article at

Bookmark
      There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

      Abstract

      Human molecular cytogenetics integrates the knowledge on chromosome and genome organization at the molecular and cellular levels in health and disease. Molecular cytogenetic diagnosis is an integral part of current genomic medicine and is the standard of care in medical genetics and cytogenetics, reproductive medicine, pediatrics, neuropsychiatry and oncology. Regardless numerous advances in this field made throughout the last two decades, researchers and practitioners who apply molecular cytogenetic techniques may encounter several problems that are extremely difficult to solve. One of them is undoubtedly the occurrence of somatic genome and chromosome variations, leading to genomic and chromosomal mosaicism, which are related but not limited to technological and evaluative limitations as well as multiplicity of interpretations. More dramatically, current biomedical literature almost lacks descriptions, guidelines or solutions of these problems. The present article overviews all these problems and gathers those exclusive data acquired from studies of genome and chromosome instability that is relevant to identification and interpretations of this fairly common cause of somatic genomic variations and chromosomal mosaicism. Although the way to define pathogenic value of all the intercellular variations of the human genome is far from being completely understood, it is possible to propose recommendations on molecular cytogenetic diagnosis and management of somatic genome variations in clinical population.

      Related collections

      Most cited references 69

      • Record: found
      • Abstract: found
      • Article: not found

      Structural variation in the human genome and its role in disease.

      During the last quarter of the twentieth century, our knowledge about human genetic variation was limited mainly to the heterochromatin polymorphisms, large enough to be visible in the light microscope, and the single nucleotide polymorphisms (SNPs) identified by traditional PCR-based DNA sequencing. In the past five years, the rapid development and expanded use of microarray technologies, including oligonucleotide array comparative genomic hybridization and SNP genotyping arrays, as well as next-generation sequencing with "paired-end" methods, has enabled a whole-genome analysis with essentially unlimited resolution. The discovery of submicroscopic copy-number variations (CNVs) present in our genomes has changed dramatically our perspective on DNA structural variation and disease. It is now thought that CNVs encompass more total nucleotides and arise more frequently than SNPs. CNVs, to a larger extent than SNPs, have been shown to be responsible for human evolution, genetic diversity between individuals, and a rapidly increasing number of traits or susceptibility to traits; such conditions have been referred to as genomic disorders. In addition to well-known sporadic chromosomal microdeletion syndromes and Mendelian diseases, many common complex traits including autism and schizophrenia can result from CNVs. Both recombination- and replication-based mechanisms for CNV formation have been described.
        Bookmark
        • Record: found
        • Abstract: found
        • Article: not found

        Aneuploidy and Confined Chromosomal Mosaicism in the Developing Human Brain

        Background Understanding the mechanisms underlying generation of neuronal variability and complexity remains the central challenge for neuroscience. Structural variation in the neuronal genome is likely to be one important mechanism for neuronal diversity and brain diseases. Large-scale genomic variations due to loss or gain of whole chromosomes (aneuploidy) have been described in cells of the normal and diseased human brain, which are generated from neural stem cells during intrauterine period of life. However, the incidence of aneuploidy in the developing human brain and its impact on the brain development and function are obscure. Methodology/Principal Findings To address genomic variation during development we surveyed aneuploidy/polyploidy in the human fetal tissues by advanced molecular-cytogenetic techniques at the single-cell level. Here we show that the human developing brain has mosaic nature, being composed of euploid and aneuploid neural cells. Studying over 600,000 neural cells, we have determined the average aneuploidy frequency as 1.25–1.45% per chromosome, with the overall percentage of aneuploidy tending to approach 30–35%. Furthermore, we found that mosaic aneuploidy can be exclusively confined to the brain. Conclusions/Significance Our data indicates aneuploidization to be an additional pathological mechanism for neuronal genome diversification. These findings highlight the involvement of aneuploidy in the human brain development and suggest an unexpected link between developmental chromosomal instability, intercellural/intertissular genome diversity and human brain diseases.
          Bookmark
          • Record: found
          • Abstract: found
          • Article: not found

          Somatic mosaicism for copy number variation in differentiated human tissues.

          Two major types of genetic variation are known: single nucleotide polymorphisms (SNPs), and a more recently discovered structural variation, involving changes in copy number (CNVs) of kilobase- to megabase-sized chromosomal segments. It is unknown whether CNVs arise in somatic cells, but it is, however, generally assumed that normal cells are genetically identical. We tested 34 tissue samples from three subjects and, having analyzed for each tissue < or =10(-6) of all cells expected in an adult human, we observed at least six CNVs, affecting a single organ or one or more tissues of the same subject. The CNVs ranged from 82 to 176 kb, often encompassing known genes, potentially affecting gene function. Our results indicate that humans are commonly affected by somatic mosaicism for stochastic CNVs, which occur in a substantial fraction of cells. The majority of described CNVs were previously shown to be polymorphic between unrelated subjects, suggesting that some CNVs previously reported as germline might represent somatic events, since in most studies of this kind, only one tissue is typically examined and analysis of parents for the studied subjects is not routinely performed. A considerable number of human phenotypes are a consequence of a somatic process. Thus, our conclusions will be important for the delineation of genetic factors behind these phenotypes. Consequently, biobanks should consider sampling multiple tissues to better address mosaicism in the studies of somatic disorders.
            Bookmark

            Author and article information

            Affiliations
            [1 ]Institute of Pediatrics and Children Surgery, Rosmedtechnologii
            [2 ]Mental Health Research Center, Russian Academy of Medical Sciences
            [3 ]Moscow City University of Psychology and Education, Moscow, Russia
            Author notes
            [* ]Address correspondence to this author at the National Research Center of Mental Health, Russian Academy of Medical Sciences, Zagorodnoe sh. 2, Moscow 119152, Russia; Tel: 7 495 952 89 90; Fax: 7 495 952 89 40; E-mail: ivan_iourov@ 123456yahoo.com
            Journal
            Curr Genomics
            CG
            Current Genomics
            Bentham Science Publishers Ltd
            1389-2029
            1875-5488
            September 2010
            : 11
            : 6
            : 440-446
            3018725
            21358989
            CG-11-440
            10.2174/138920210793176010
            ©2010 Bentham Science Publishers Ltd.

            This is an open access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.5/) which permits unrestrictive use, distribution, and reproduction in any medium, provided the original work is properly cited.

            Categories
            Article

            Comments

            Comment on this article