10
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Long QT Syndrome and Sinus Bradycardia–A Mini Review

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Congenital long-QT syndrome (LQTS) is an inherited cardiac disorder characterized by the prolongation of ventricular repolarization, susceptibility to Torsades de Pointes (TdP), and a risk for sudden death. Various types of congenital LQTS exist, all due to specific defects in ion channel-related genes. Interestingly, almost all of the ion channels affected by the various types of LQTS gene mutations are also expressed in the human sinoatrial node (SAN). It is therefore not surprising that LQTS is frequently associated with a change in basal heart rate (HR). However, current data on how the LQTS-associated ion channel defects result in impaired human SAN pacemaker activity are limited. In this mini-review, we provide an overview of known LQTS mutations with effects on HR and the underlying changes in expression and kinetics of ion channels. Sinus bradycardia has been reported in relation to a large number of LQTS mutations. However, the occurrence of both QT prolongation and sinus bradycardia on a family basis is almost completely limited to LQTS types 3 and 4 (LQT3 and Ankyrin-B syndrome, respectively). Furthermore, a clear causative role of this sinus bradycardia in cardiac events seems reserved to mutations underlying LQT3.

          Related collections

          Most cited references61

          • Record: found
          • Abstract: found
          • Article: not found

          Genotype-phenotype correlation in the long-QT syndrome: gene-specific triggers for life-threatening arrhythmias.

          The congenital long-QT syndrome (LQTS) is caused by mutations on several genes, all of which encode cardiac ion channels. The progressive understanding of the electrophysiological consequences of these mutations opens unforeseen possibilities for genotype-phenotype correlation studies. Preliminary observations suggested that the conditions ("triggers") associated with cardiac events may in large part be gene specific. We identified 670 LQTS patients of known genotype (LQT1, n=371; LQT2, n=234; LQT3, n=65) who had symptoms (syncope, cardiac arrest, sudden death) and examined whether 3 specific triggers (exercise, emotion, and sleep/rest without arousal) differed according to genotype. LQT1 patients experienced the majority of their events (62%) during exercise, and only 3% occurred during rest/sleep. These percentages were almost reversed among LQT2 and LQT3 patients, who were less likely to have events during exercise (13%) and more likely to have events during rest/sleep (29% and 39%). Lethal and nonlethal events followed the same pattern. Corrected QT interval did not differ among LQT1, LQT2, and LQT3 patients (498, 497, and 506 ms, respectively). The percent of patients who were free of recurrence with ss-blocker therapy was higher and the death rate was lower among LQT1 patients (81% and 4%, respectively) than among LQT2 (59% and 4%, respectively) and LQT3 (50% and 17%, respectively) patients. Life-threatening arrhythmias in LQTS patients tend to occur under specific circumstances in a gene-specific manner. These data allow new insights into the mechanisms that relate the electrophysiological consequences of mutations on specific genes to clinical manifestations and offer the possibility of complementing traditional therapy with gene-specific approaches.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Severe arrhythmia disorder caused by cardiac L-type calcium channel mutations.

            Timothy syndrome (TS) is a multisystem disorder that causes syncope and sudden death from cardiac arrhythmias. Prominent features include congenital heart disease, immune deficiency, intermittent hypoglycemia, cognitive abnormalities, and autism. All TS individuals have syndactyly (webbing of fingers and toes). We discovered that TS resulted from a recurrent, de novo cardiac L-type calcium channel (CaV1.2) mutation, G406R. G406 is located in alternatively spliced exon 8A, encoding transmembrane segment S6 of domain I. Here, we describe two individuals with a severe variant of TS (TS2). Neither child had syndactyly. Both individuals had extreme prolongation of the QT interval on electrocardiogram, with a QT interval corrected for heart rate ranging from 620 to 730 ms, causing multiple arrhythmias and sudden death. One individual had severe mental retardation and nemaline rod skeletal myopathy. We identified de novo missense mutations in exon 8 of CaV1.2 in both individuals. One was an analogous mutation to that found in exon 8A in classic TS, G406R. The other mutation was G402S. Exon 8 encodes the same region as exon 8A, and the two are mutually exclusive. The spliced form of CaV1.2 containing exon 8 is highly expressed in heart and brain, accounting for approximately 80% of CaV1.2 mRNAs. G406R and G402S cause reduced channel inactivation, resulting in maintained depolarizing L-type calcium currents. Computer modeling showed prolongation of cardiomyocyte action potentials and delayed afterdepolarizations, factors that increase risk of arrhythmia. These data indicate that gain-of-function mutations of CaV1.2 exons 8 and 8A cause distinct forms of TS.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Ankyrin-B mutation causes type 4 long-QT cardiac arrhythmia and sudden cardiac death.

              Mutations in ion channels involved in the generation and termination of action potentials constitute a family of molecular defects that underlie fatal cardiac arrhythmias in inherited long-QT syndrome. We report here that a loss-of-function (E1425G) mutation in ankyrin-B (also known as ankyrin 2), a member of a family of versatile membrane adapters, causes dominantly inherited type 4 long-QT cardiac arrhythmia in humans. Mice heterozygous for a null mutation in ankyrin-B are haploinsufficient and display arrhythmia similar to humans. Mutation of ankyrin-B results in disruption in the cellular organization of the sodium pump, the sodium/calcium exchanger, and inositol-1,4,5-trisphosphate receptors (all ankyrin-B-binding proteins), which reduces the targeting of these proteins to the transverse tubules as well as reducing overall protein level. Ankyrin-B mutation also leads to altered Ca2+ signalling in adult cardiomyocytes that results in extrasystoles, and provides a rationale for the arrhythmia. Thus, we identify a new mechanism for cardiac arrhythmia due to abnormal coordination of multiple functionally related ion channels and transporters.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Cardiovasc Med
                Front Cardiovasc Med
                Front. Cardiovasc. Med.
                Frontiers in Cardiovascular Medicine
                Frontiers Media S.A.
                2297-055X
                03 August 2018
                2018
                : 5
                : 106
                Affiliations
                [1] 1Department of Medical Biology, Amsterdam University Medical Centers , Amsterdam, Netherlands
                [2] 2Department of Experimental Cardiology, Amsterdam University Medical Centers , Amsterdam, Netherlands
                Author notes

                Edited by: Giannis G. Baltogiannis, Vrije Universiteit Brussel, Belgium

                Reviewed by: Daniel M. Johnson, Cardiovascular Research Institute Maastricht, Maastricht University, Netherlands; Osmar Antonio Centurión, Universidad Nacional de Asunción, Paraguay

                *Correspondence: Arie O. Verkerk a.o.verkerk@ 123456amc.uva.nl

                This article was submitted to Cardiac Rhythmology, a section of the journal Frontiers in Cardiovascular Medicine

                Article
                10.3389/fcvm.2018.00106
                6085426
                30123799
                30a1b6e8-ac0b-4aba-b202-23c234b94b5f
                Copyright © 2018 Wilders and Verkerk.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 18 June 2018
                : 16 July 2018
                Page count
                Figures: 1, Tables: 1, Equations: 0, References: 70, Pages: 7, Words: 5650
                Categories
                Cardiovascular Medicine
                Mini Review

                mutations,sinus bradycardia,human,long-qt syndrome,heart rate,sinoatrial node,ion channel,computer simulation

                Comments

                Comment on this article