1
views
0
recommends
+1 Recommend
2 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      A review and updated classification of pollen gathering behavior in bees (Hymenoptera, Apoidea)

      , ,

      Journal of Hymenoptera Research

      Pensoft Publishers

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Pollen is the primary protein and nutrient source for bees and they employ many different behaviors to gather it. Numerous terms have been coined to describe pollen gathering behaviors, creating confusion as many are not clearly-defined or overlap with existing terms. There is a need for a clear yet flexible classification that enables accurate, succinct descriptions of pollen gathering behaviors to enable meaningful discussion and comparison. Here, we classify the different pollen gathering behaviors into two main classes: active and incidental pollen collection. Active pollen collection is subdivided into six behaviors: scraping with the extremities, buzzing, rubbing with the body and/or scopae, rubbing with the face, tapping, and rasping. In addition to the active and incidental pollen gathering behaviors, many bees have an intermediate step in which they temporarily accumulate pollen on a discrete patch of specialized hairs. Each behavior is described and illustrated with video examples. Many of these behaviors can be further broken down based on the variations found in different bee species. Different species or individual bees mix and match these pollen collecting behaviors depending on their behavioral plasticity and host plant morphology. Taken together, the different behaviors are combined to create complex behavioral repertoires built on a foundation of simple and basic steps. This classification sets the groundwork for further research on various topics, including behavioral plasticity in different species, comparisons between generalists and specialists, and the relative effectiveness of different pollen gathering behaviors.

          Related collections

          Most cited references 99

          • Record: found
          • Abstract: not found
          • Article: not found

          The Foraging Specializations of Individual Bumblebees

            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            The Terminology of Floral Larceny

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Floral resource utilization by solitary bees (Hymenoptera: Apoidea) and exploitation of their stored foods by natural enemies.

              Bees are phytophagous insects that exhibit recurrent ecological specializations related to factors generally different from those discussed for other phytophagous insects. Pollen specialists have undergone extensive radiations, and specialization is not always a derived state. Floral host associations are conserved in some bee lineages. In others, various species specialize on different host plants that are phenotypically similar in presenting predictably abundant floral resources. The nesting of solitary bees in localized areas influences the intensity of interactions with enemies and competitors. Abiotic factors do not always explain the intraspecific variation in the spatial distribution of solitary bees. Foods stored by bees attract many natural enemies, which may shape diverse facets of nesting and foraging behavior. Parasitism has evolved repeatedly in some, but not all, bee lineages. Available evidence suggests that cleptoparasitic lineages are most speciose in temperate zones. Female parasites frequently have a suite of characters that can be described as a masculinized feminine form. The evolution of resource specialization (including parasitism) in bees presents excellent opportunities to investigate phenotypic mechanisms responsible for evolutionary change.
                Bookmark

                Author and article information

                Journal
                Journal of Hymenoptera Research
                JHR
                Pensoft Publishers
                1314-2607
                1070-9428
                August 30 2019
                August 30 2019
                : 71
                : 171-208
                Article
                10.3897/jhr.71.32671
                © 2019

                Comments

                Comment on this article