Blog
About

7
views
0
recommends
+1 Recommend
2 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      An annotated and illustrated checklist of Microgastrinae wasps (Hymenoptera, Braconidae) from the Canadian Arctic Archipelago and Greenland

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Abstract

          The Microgastrinae ( Hymenoptera : Braconidae ) from ten islands of the Canadian Arctic Archipelago (CAA) and Greenland were studied based on 2,183 specimens deposited in collections. We report a total of 33 species in six genera, more than doubling the totals previously known. Most of the species (75.7%) have a distribution restricted to the Nearctic, with nine of those (27.3%) confirmed to be High Arctic endemics and another 10 species considered very likely to be High Arctic endemics as well – accounting for all of those, more than half of all species found are endemic to the region. The most diverse genera were Cotesia (10 species), Glyptapanteles (9 species), and Microplitis (7 species), representing 78.8% of the overall species diversity in the region. The six most frequently collected species comprised 84.7% of all examined specimens. The flight period for Microgastrinae in the High Arctic encompasses only two months, with activity peaking during the first half of July, when almost 40% of all available specimens were collected, and then plummeting in the first half to the end of August. Microgastrinae wasps from the High Arctic are currently known to parasitize eight species within four families of Lepidoptera : three species of Noctuidae , two each of Lymantridae and Nymphalidae , and one species of Pterophoridae . However, that information is very preliminary, as only six of the 33 species of microgastrines currently have associated host data. An annotated checklist, including photographs for 24 of the 33 species, is provided, as well as a key to all Microgastrinae genera present in the region.

          Related collections

          Most cited references 25

          • Record: found
          • Abstract: not found
          • Article: not found

          THE POLYPHYLETIC NATURE OF APANTELES FOERSTER (HYMENOPTERA: BRACONIDAE): A PHYLOGENY AND RECLASSIFICATION OF MICROGASTRINAE

           W. Mason (1981)
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Review of Apanteles sensu stricto (Hymenoptera, Braconidae, Microgastrinae) from Area de Conservación Guanacaste, northwestern Costa Rica, with keys to all described species from Mesoamerica

            Abstract More than half a million specimens of wild-caught Lepidoptera caterpillars have been reared for their parasitoids, identified, and DNA barcoded over a period of 34 years (and ongoing) from Area de Conservación de Guanacaste (ACG), northwestern Costa Rica. This provides the world’s best location-based dataset for studying the taxonomy and host relationships of caterpillar parasitoids. Among Hymenoptera, Microgastrinae (Braconidae) is the most diverse and commonly encountered parasitoid subfamily, with many hundreds of species delineated to date, almost all undescribed. Here, we reassess the limits of the genus Apanteles sensu stricto, describe 186 new species from 3,200+ parasitized caterpillars of hundreds of ACG Lepidoptera species, and provide keys to all 205 described Apanteles from Mesoamerica – including 19 previously described species in addition to the new species. The Mesoamerican Apanteles are assigned to 32 species-groups, all but two of which are newly defined. Taxonomic keys are presented in two formats: traditional dichotomous print versions and links to electronic interactive versions (software Lucid 3.5). Numerous illustrations, computer-generated descriptions, distributional information, wasp biology, and DNA barcodes (where available) are presented for every species. All morphological terms are detailed and linked to the Hymenoptera Anatomy Ontology website. DNA barcodes (a standard fragment of the cytochrome c oxidase I (COI) mitochondrial gene), information on wasp biology (host records, solitary/gregariousness of wasp larvae), ratios of morphological features, and wasp microecological distributions were used to help clarify boundaries between morphologically cryptic species within species-complexes. Because of the high accuracy of host identification for about 80% of the wasp species studied, it was possible to analyze host relationships at a regional level. The ACG species of Apanteles attack mainly species of Hesperiidae, Elachistidae and Crambidae (Lepidoptera). About 90% of the wasp species with known host records seem to be monophagous or oligophagous at some level, parasitizing just one host family and commonly, just one species of caterpillar. Only 15 species (9%) parasitize species in more than one family, and some of these cases are likely to be found to be species complexes. We have used several information sources and techniques (traditional taxonomy, molecular, software-based, biology, and geography) to accelerate the process of finding and describing these new species in a hyperdiverse group such as Apanteles. The following new taxonomic and nomenclatural acts are proposed. Four species previously considered to be Apanteles are transferred to other microgastrine genera: Dolichogenidea hedyleptae (Muesebeck, 1958), comb. n., Dolichogenidea politiventris (Muesebeck, 1958), comb. n., Rhygoplitis sanctivincenti (Ashmead, 1900), comb. n., and Illidops scutellaris (Muesebeck, 1921), comb. rev. One European species that is a secondary homonym to a Mesoamerican species is removed from Apanteles and transferred to another genus: Iconella albinervis (Tobias, 1964), stat. rev. The name Apanteles albinervican Shenefelt, 1972, is an invalid replacement name for Apanteles albinervis (Cameron, 1904), stat. rev., and thus the later name is reinstated as valid. The following 186 species, all in Apanteles and all authored by Fernández-Triana, are described as species nova: adelinamoralesae, adrianachavarriae, adrianaguilarae, adrianguadamuzi, aichagirardae, aidalopezae, albanjimenezi, alejandromasisi, alejandromorai, minorcarmonai, alvarougaldei, federicomatarritai, anabellecordobae, rostermoragai, anamarencoae, anamartinesae, anapiedrae, anariasae, andreacalvoae, angelsolisi, arielopezi, bernardoespinozai, bernyapui, bettymarchenae, bienvenidachavarriae, calixtomoragai, carloscastilloi, carlosguadamuzi, eliethcantillanoae, carlosrodriguezi, carlosviquezi, carloszunigai, carolinacanoae, christianzunigai, cinthiabarrantesae, ciriloumanai, cristianalemani, cynthiacorderoae, deifiliadavilae, dickyui, didiguadamuzi, diegoalpizari, diegotorresi, diniamartinezae, duniagarciae, duvalierbricenoi, edgarjimenezi, edithlopezae, eduardoramirezi, edwinapui, eldarayae, erickduartei, esthercentenoae, eugeniaphilipsae, eulogiosequeira, felipechavarriai, felixcarmonai, fernandochavarriai, flormoralesae, franciscopizarroi, franciscoramirezi, freddyquesadai, freddysalazari, gabrielagutierrezae, garygibsoni, gerardobandoi, gerardosandovali, gladysrojasae, glenriverai, gloriasihezarae, guadaluperodriguezae, guillermopereirai, juanmatai, harryramirezi, hectorsolisi, humbertolopezi, inesolisae, irenecarrilloae, isaacbermudezi, isidrochaconi, isidrovillegasi, ivonnetranae, jairomoyai, javiercontrerasi, javierobandoi, javiersihezari, jesusbrenesi, jesusugaldei, jimmychevezi, johanvargasi, jorgecortesi, jorgehernandezi, josecalvoi, josecortesi, josediazi, josejaramilloi, josemonteroi, joseperezi, joserasi, juanapui, juancarrilloi, juangazoi, juanhernandezi, juanlopezi, juanvictori, juliodiazi, juniorlopezi, keineraragoni, laurahuberae, laurenmoralesae, leninguadamuzi, leonelgarayi, lilliammenae, lisabearssae, luciariosae, luisbrizuelai, luiscanalesi, luiscantillanoi, luisgarciai, luisgaritai, luishernandezi, luislopezi, luisvargasi, manuelarayai, manuelpereirai, manuelriosi, manuelzumbadoi, marcobustosi, marcogonzalezi, marcovenicioi, mariachavarriae mariaguevarae, marialuisariasae, mariamendezae, marianopereirai, mariatorrentesae, sigifredomarini, marisolarroyoae, marisolnavarroae, marvinmendozai, mauriciogurdiani, milenagutierrezae, monicachavarriae, oscarchavesi, osvaldoespinozai, pablotranai, pabloumanai, pablovasquezi, paulaixcamparijae, luzmariaromeroae, petronariosae, randallgarciai, randallmartinezi, raulacevedoi, raulsolorsanoi, wadyobandoi, ricardocaleroi, robertmontanoi, robertoespinozai, robertovargasi, rodrigogamezi, rogerblancoi, rolandoramosi, rolandovegai, ronaldcastroi, ronaldgutierrezi, ronaldmurilloi, ronaldnavarroi, ronaldquirosi, ronaldzunigai, rosibelelizondoae, ruthfrancoae, sergiocascantei, sergioriosi, tiboshartae, vannesabrenesae, minornavarroi, victorbarrantesi, waldymedinai, wilbertharayai, williamcamposi, yeissonchavesi, yilbertalvaradoi, yolandarojasae, hazelcambroneroae, zeneidabolanosae.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Complementary molecular information changes our perception of food web structure.

              How networks of ecological interactions are structured has a major impact on their functioning. However, accurately resolving both the nodes of the webs and the links between them is fraught with difficulties. We ask whether the new resolution conferred by molecular information changes perceptions of network structure. To probe a network of antagonistic interactions in the High Arctic, we use two complementary sources of molecular data: parasitoid DNA sequenced from the tissues of their hosts and host DNA sequenced from the gut of adult parasitoids. The information added by molecular analysis radically changes the properties of interaction structure. Overall, three times as many interaction types were revealed by combining molecular information from parasitoids and hosts with rearing data, versus rearing data alone. At the species level, our results alter the perceived host specificity of parasitoids, the parasitoid load of host species, and the web-wide role of predators with a cryptic lifestyle. As the northernmost network of host-parasitoid interactions quantified, our data point exerts high leverage on global comparisons of food web structure. However, how we view its structure will depend on what information we use: compared with variation among networks quantified at other sites, the properties of our web vary as much or much more depending on the techniques used to reconstruct it. We thus urge ecologists to combine multiple pieces of evidence in assessing the structure of interaction webs, and suggest that current perceptions of interaction structure may be strongly affected by the methods used to construct them.
                Bookmark

                Author and article information

                Journal
                Zookeys
                Zookeys
                ZooKeys
                ZooKeys
                Pensoft Publishers
                1313-2989
                1313-2970
                2017
                17 August 2017
                : 691
                : 49-101
                Affiliations
                [1 ] Canadian National Collection of Insects, 960 Carling Ave, Ottawa, K1A 0C6, Canada
                [2 ] Institut für Biologie, Freie Universität Berlin, Königin-Luise-Str. 1-3, 14195 Berlin, Germany
                [3 ] Ottawa, Ontario, Canada
                [4 ] Department of Biology, University of Ottawa, 30 Marie Curie, Ottawa, K1N 6N5, Canada
                [5 ] Finnish Environment Institute (SYKE), Natural Environment Centre, Lentiirantie 342 B, FI-88900 Kuhmo, Finland
                Author notes
                Corresponding author: Jose Fernández-Triana ( jose.fernandez@ 123456agr.gc.ca )

                Academic editor: K. van Achterberg

                Article
                10.3897/zookeys.691.14491
                5672697
                Jose Fernández-Triana, Joel Buffam, Melanie Beaudin, Hannah Davis, Ana Fernández-Galliano, Emily Griffin, Shang-Yao Lin, Megan K. McAulay, Robin Richter, Freddy Rodriguez, Gergely Várkonyi

                This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                Funding
                Funded by: Agriculture and Agri-Food Canada 501100000040 http://doi.org/10.13039/501100000040
                Categories
                Checklist

                Comments

                Comment on this article