58
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Biosurfactants: Promising Molecules for Petroleum Biotechnology Advances

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The growing global demand for sustainable technologies that improves the efficiency of petrochemical processes in the oil industry has driven advances in petroleum biotechnology in recent years. Petroleum industry uses substantial amounts of petrochemical-based synthetic surfactants in its activities as mobilizing agents to increase the availability or recovery of hydrocarbons as well as many other applications related to extraction, treatment, cleaning, and transportation. However, biosurfactants have several potential applications for use across the oil processing chain and in the formulations of petrochemical products such as emulsifying/demulsifying agents, anticorrosive, biocides for sulfate-reducing bacteria, fuel formulation, extraction of bitumen from tar sands, and many other innovative applications. Due to their versatility and proven efficiency, biosurfactants are often presented as valuable versatile tools that can transform and modernize petroleum biotechnology in an attempt to provide a true picture of state of the art and directions or use in the oil industry. We believe that biosurfactants are going to have a significant role in many future applications in the oil industries and in this review therefore, we highlight recent important relevant applications, patents disclosures and potential future applications for biosurfactants in petroleum and related industries.

          Related collections

          Most cited references57

          • Record: found
          • Abstract: found
          • Article: not found

          Microbial biosurfactants production, applications and future potential.

          Microorganisms synthesise a wide range of surface-active compounds (SAC), generally called biosurfactants. These compounds are mainly classified according to their molecular weight, physico-chemical properties and mode of action. The low-molecular-weight SACs or biosurfactants reduce the surface tension at the air/water interfaces and the interfacial tension at oil/water interfaces, whereas the high-molecular-weight SACs, also called bioemulsifiers, are more effective in stabilising oil-in-water emulsions. Biosurfactants are attracting much interest due to their potential advantages over their synthetic counterparts in many fields spanning environmental, food, biomedical, and other industrial applications. Their large-scale application and production, however, are currently limited by the high cost of production and by limited understanding of their interactions with cells and with the abiotic environment. In this paper, we review the current knowledge and the latest advances in biosurfactant applications and the biotechnological strategies being developed for improving production processes and future potential.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Iron corrosion by novel anaerobic microorganisms.

            Corrosion of iron presents a serious economic problem. Whereas aerobic corrosion is a chemical process, anaerobic corrosion is frequently linked to the activity of sulphate-reducing bacteria (SRB). SRB are supposed to act upon iron primarily by produced hydrogen sulphide as a corrosive agent and by consumption of 'cathodic hydrogen' formed on iron in contact with water. Among SRB, Desulfovibrio species--with their capacity to consume hydrogen effectively--are conventionally regarded as the main culprits of anaerobic corrosion; however, the underlying mechanisms are complex and insufficiently understood. Here we describe novel marine, corrosive types of SRB obtained via an isolation approach with metallic iron as the only electron donor. In particular, a Desulfobacterium-like isolate reduced sulphate with metallic iron much faster than conventional hydrogen-scavenging Desulfovibrio species, suggesting that the novel surface-attached cell type obtained electrons from metallic iron in a more direct manner than via free hydrogen. Similarly, a newly isolated Methanobacterium-like archaeon produced methane with iron faster than do known hydrogen-using methanogens, again suggesting a more direct access to electrons from iron than via hydrogen consumption.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Recent development in the treatment of oily sludge from petroleum industry: a review.

              Oily sludge is one of the most significant solid wastes generated in the petroleum industry. It is a complex emulsion of various petroleum hydrocarbons (PHCs), water, heavy metals, and solid particles. Due to its hazardous nature and increased generation quantities around the world, the effective treatment of oily sludge has attracted widespread attention. In this review, the origin, characteristics, and environmental impacts of oily sludge were introduced. Many methods have been investigated for dealing with PHCs in oily sludge either through oil recovery or sludge disposal, but little attention has been paid to handle its various heavy metals. These methods were discussed by dividing them into oil recovery and sludge disposal approaches. It was recognized that no single specific process can be considered as a panacea since each method is associated with different advantages and limitations. Future efforts should focus on the improvement of current technologies and the combination of oil recovery with sludge disposal in order to comply with both resource reuse recommendations and environmental regulations. The comprehensive examination of oily sludge treatment methods will help researchers and practitioners to have a good understanding of both recent developments and future research directions.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Microbiol
                Front Microbiol
                Front. Microbiol.
                Frontiers in Microbiology
                Frontiers Media S.A.
                1664-302X
                31 October 2016
                2016
                : 7
                : 1718
                Affiliations
                [1] 1Northeast Biotechnology Network (RENORBIO), Federal Rural University of Pernambuco Recife, Brazil
                [2] 2Advanced Institute of Technology and Innovation Recife, Brazil
                [3] 3Center of Sciences and Technology, Catholic University of Pernambuco (UNICAP) Recife, Brazil
                [4] 4Faculty of Life and Health Sciences, School of Biomedical Sciences, University of Ulster Ulster, UK
                Author notes

                Edited by: Randhir Makkar, Guild Biosceinces, USA

                Reviewed by: Jun-Jie Zhang, Indiana University School of Medicine, USA; Kamaljeet K. Sekhon Randhawa, Aalborg University Copenhagen, Denmark; Surekha K. Satpute, Savitribai Phule Pune University, India

                *Correspondence: Leonie A. Sarubbo leonie@ 123456unicap.br

                This article was submitted to Microbiotechnology, Ecotoxicology and Bioremediation, a section of the journal Frontiers in Microbiology

                Article
                10.3389/fmicb.2016.01718
                5087163
                27843439
                30ce8cdf-c484-44be-be84-19bbf4a6d609
                Copyright © 2016 De Almeida, Soares Da Silva, Luna, Rufino, Santos, Banat and Sarubbo.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 11 September 2016
                : 13 October 2016
                Page count
                Figures: 2, Tables: 3, Equations: 0, References: 106, Pages: 14, Words: 11779
                Categories
                Microbiology
                Review

                Microbiology & Virology
                biosurfactants,petroleum biotechnology,emulsified fuels,enhanced oil recovery,bitumen,sulfate reducing bacteria

                Comments

                Comment on this article