28
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The Neuropeptide PDF Acts Directly on Evening Pacemaker Neurons to Regulate Multiple Features of Circadian Behavior

      research-article
      , , *
      PLoS Biology
      Public Library of Science

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Animals use distinct sets of clock neurons to time behaviors in the morning and evening. In this article, the direct neural targets for morning neurons and the neuropeptide pigment dispersing factor are revealed in the fruit fly.

          Abstract

          Discrete clusters of circadian clock neurons temporally organize daily behaviors such as sleep and wake. In Drosophila, a network of just 150 neurons drives two peaks of timed activity in the morning and evening. A subset of these neurons expresses the neuropeptide pigment dispersing factor (PDF), which is important for promoting morning behavior as well as maintaining robust free-running rhythmicity in constant conditions. Yet, how PDF acts on downstream circuits to mediate rhythmic behavior is unknown. Using circuit-directed rescue of PDF receptor mutants, we show that PDF targeting of just ∼30 non-PDF evening circadian neurons is sufficient to drive morning behavior. This function is not accompanied by large changes in core molecular oscillators in light-dark, indicating that PDF RECEPTOR likely regulates the output of these cells under these conditions. We find that PDF also acts on this focused set of non-PDF neurons to regulate both evening activity phase and period length, consistent with modest resetting effects on core oscillators. PDF likely acts on more distributed pacemaker neuron targets, including the PDF neurons themselves, to regulate rhythmic strength. Here we reveal defining features of the circuit-diagram for PDF peptide function in circadian behavior, revealing the direct neuronal targets of PDF as well as its behavioral functions at those sites. These studies define a key direct output circuit sufficient for multiple PDF dependent behaviors.

          Author Summary

          Animals depend on being awake at the right time of day to find food and mates and fend off predators. Circadian pacemaker neurons in the brain play a crucial role in timing of specific behaviors to the appropriate times of day. These neurons are further specialized to those primarily responsible for morning and evening behavior. We have used the fruit fly Drosophila as a simple model system to elucidate the neural circuits important for timed daily behavior. In flies, a small group of clock neurons devoted to morning behavior express a neuropeptide, PIGMENT DISPERSING FACTOR (PDF). Until now it was unclear what the direct neural targets of this peptide are and how its actions at those targets mediate timed behavior. Here we find that the so-called morning clock neurons communicate directly to other clock neurons, those responsible for evening behavior. This communication sustains high amplitude morning activity and sets the phase of evening activity as well as the period of activity rhythms in constant conditions. These studies reveal the circuit diagram for PDF function in circadian behavior.

          Related collections

          Most cited references36

          • Record: found
          • Abstract: found
          • Article: not found

          A pdf neuropeptide gene mutation and ablation of PDF neurons each cause severe abnormalities of behavioral circadian rhythms in Drosophila.

          The mechanisms by which circadian pacemaker systems transmit timing information to control behavior are largely unknown. Here, we define two critical features of that mechanism in Drosophila. We first describe animals mutant for the pdf neuropeptide gene, which is expressed by most of the candidate pacemakers (LNv neurons). Next, we describe animals in which pdf neurons were selectively ablated. Both sets of animals produced similar behavioral phenotypes. Both sets entrained to light, but both were largely arrhythmic under constant conditions. A minority of each pdf variant exhibited weak to moderate free-running rhythmicity. These results confirm the assignment of LNv neurons as the principal circadian pacemakers controlling daily locomotion in Drosophila. They also implicate PDF as the principal circadian transmitter.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Coupled oscillators control morning and evening locomotor behaviour of Drosophila.

            Daily rhythms of physiology and behaviour are precisely timed by an endogenous circadian clock. These include separate bouts of morning and evening activity, characteristic of Drosophila melanogaster and many other taxa, including mammals. Whereas multiple oscillators have long been proposed to orchestrate such complex behavioural programmes, their nature and interplay have remained elusive. By using cell-specific ablation, we show that the timing of morning and evening activity in Drosophila derives from two distinct groups of circadian neurons: morning activity from the ventral lateral neurons that express the neuropeptide PDF, and evening activity from another group of cells, including the dorsal lateral neurons. Although the two oscillators can function autonomously, cell-specific rescue experiments with circadian clock mutants indicate that they are functionally coupled.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Morning and evening peaks of activity rely on different clock neurons of the Drosophila brain.

              In Drosophila, a 'clock' situated in the brain controls circadian rhythms of locomotor activity. This clock relies on several groups of neurons that express the Period (PER) protein, including the ventral lateral neurons (LN(v)s), which express the Pigment-dispersing factor (PDF) neuropeptide, and the PDF-negative dorsal lateral neurons (LN(d)s). In normal cycles of day and night, adult flies exhibit morning and evening peaks of activity; however, the contribution of the different clock neurons to the rest-activity pattern remains unknown. Here, we have used targeted expression of PER to restore the clock function of specific subsets of lateral neurons in arrhythmic per(0) mutant flies. We show that PER expression restricted to the LN(v)s only restores the morning activity, whereas expression of PER in both the LN(v)s and LN(d)s also restores the evening activity. This provides the first neuronal bases for 'morning' and 'evening' oscillators in the Drosophila brain. Furthermore, we show that the LN(v)s alone can generate 24 h activity rhythms in constant darkness, indicating that the morning oscillator is sufficient to drive the circadian system.
                Bookmark

                Author and article information

                Contributors
                Role: Academic Editor
                Journal
                PLoS Biol
                plos
                plosbiol
                PLoS Biology
                Public Library of Science (San Francisco, USA )
                1544-9173
                1545-7885
                July 2009
                July 2009
                21 July 2009
                : 7
                : 7
                : e1000154
                Affiliations
                [1]Department of Neurobiology and Physiology, Northwestern University, Evanston, Illinois, United States of America
                Howard Hughes Medical Institute/Stanford University, United States of America
                Author notes

                The author(s) have made the following declarations about their contributions: Conceived and designed the experiments: BCL LZ RA. Performed the experiments: BCL LZ. Analyzed the data: BCL LZ RA. Wrote the paper: BCL LZ RA.

                Article
                08-PLBI-RA-4563R4
                10.1371/journal.pbio.1000154
                2702683
                19621061
                30cfeeef-8aab-4d95-9372-5a14d034a613
                Lear et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 24 October 2008
                : 5 June 2009
                Page count
                Pages: 11
                Categories
                Research Article
                Cell Biology/Gene Expression
                Cell Biology/Neuronal and Glial Cell Biology
                Genetics and Genomics/Animal Genetics
                Mental Health/Sleep Disorders
                Neuroscience

                Life sciences
                Life sciences

                Comments

                Comment on this article